
sat
vik

gu
pta

.co
m

Object Oriented Software Engineering

Satvik Gupta

May 19, 2023

Contents
Object Oriented Software Engineering 3

Object Oriented . 3
Software Engineering . 3

Software 4
Program . 4
Documentation . 4
Operating Manual . 4
Characteristics of Software . 4

Object Oriented Basic Concepts 4
Classes . 4
Objects . 5
Encapsulation . 5
Inheritance . 5
Polymorphism . 5
Data Abstraction . 5

Object Oriented Software Development (OOSD) 5
Coad/Yourdon Methodology . 6
Rumbaugh Methodology . 7
Booch Methodology . 7

Macro Process . 7
Micro Process . 7

Jacobson Methodology . 7
OO Modelling and UML . 8
Class, Responsibility, Collaboration (CRC) . 8

Process Framework 8
Umbrella Activities . 9

SDLCs 11
Waterfall . 11
Prototyping . 12
Iterative Enhancement . 12
Spiral Model . 13

Rounds . 14
XP - Extreme Programming . 14

Object Oriented SDLCs 15
Phases of OOSDLC . 15

Fountain Model . 15
Rational Unified Process . 16

1

sat
vik

gu
pta

.co
m

Features . 16
Structure of RUP . 17

Software Requirements 20
Characteristics of a Good Requirement . 20
Identification of Stakeholders . 20

Internal People of Customer’s Organization . 20
External People of Customer’s Organization . 20
Internal People of Developer’s Organization . 20
External People of Developer’s Organization . 20

Functional vs Non-Functional Requirements . 20
Functional . 20
Non-Functional . 21

Requirement Elicitation Techniques 21
Interviews . 21
Brainstorming . 21

Facilitated Application Specification Technique (FAST) . 22
Guidelines . 22
Preparation . 22
Activities . 22

Prototyping . 22

Use Case Approach 22
Terms . 23
Relationships between Use Cases . 23

Extend Relationship . 23
Include Relationship . 24

Use Case Description . 24
Scenario Diagrams . 24

Object Oriented Analysis 25
Classes . 25

Entity Classes . 25
Interface Classes . 26
Control Class . 26

Relationships between Classes . 27
Class Diagram . 28

Sequence Diagrams 28
Centralized vs Decentralized Control Structures . 31

Collaboration Diagrams 33

OO-Design 33
Identification of Operations . 33
Detailed Design and Software Design Document . 34
Generation of Test Cases from Use Cases . 34

Terminology . 35
OO Design Principles for Software Quality . 38

Good Programming Practices 38

Software Testing 39
Verification Techniques . 39

Peer Reviews . 39
Walkthrough . 39
Inspections . 39

2

sat
vik

gu
pta

.co
m

Checklist . 39

Functional Testing 40
Boundary Value Analysis . 40

Robustness Testing . 40
Worst Case Testing . 41
Robust Worst Case . 41

Equivalence Class Testing . 41

Structural Testing 41
Path Testing . 41

Class Testing 43

Mutation Testing 43

Levels of Testing 43
Unit Test . 43
Integration Test . 43
System Testing . 43
Acceptance Testing . 43

Object Oriented Software Engineering
Many of the images and tables used in this document have been taken from Object Oriented Software
Engineering by Yogesh Singh,Ruchika Malhotra. Please support their efforts by buying a copy here.

It consists of two terms – object oriented, and software engineering.

Object Oriented
It is a collection of information that itself act as a singular entity. It allows the user to focus completely on the task
rather than on the tools.

For example – C++, etc.

With the help of this, reusability as well as abstraction is possible.

The necessity of developing a maintaining a large-size, complex, and varied functionalities software system has
caused us to look for new approaches of software design and development.

The conventional approaches like Waterfall Model may not be very useful due to non-availability of iterations, no
provision of reuse, and difficulty in incorporating changing requirements.We may also build every software system
from scratch that results into a costly software system, including very high maintenance cost.

An object oriented approach may address such issues, that’s why it has become very popular in designing,developing,
and maintaining large size software systems. Object oriented approach’s modelling ability helps us to represent the
real world situations and visualize them.

Software Engineering
It is a profession dedicated to designing, implementing and modifying so that the software is more
affordable, maintainable, faster to build, and high quality.

OR

The establishment and use of some engineering principles in order to obtain economically developed
software that is reliable and works efficiently on real machines.

3

https://www.amazon.in/Object-Oriented-Software-Engineering-Yogesh-Singh-ebook/dp/B00K7YGMA6/ref=sr_1_1?keywords=object-oriented+software+engineering+yogesh+singh&qid=1684509240&sprefix=yogesh+singh+obje%2Caps%2C249&sr=8-1

sat
vik

gu
pta

.co
m

Software
It is a combination of programs, documentation and operating manual.

Program
A certain set of instructions that are written for a specific purpose. It may contain statements to enhance the
readability of the program.

Documentation
Documentation is created and used during development. It is used to explain the code, what it does, and why it has
been coded in a certain way.

Operating Manual
Explains to the customer how the software is to be used. It is delivered along with the software to the customer, at
the time of release.

The use of use cases was introduced in Object Oriented Methodology.

Characteristics of Software
Bathtub and software curve bs

Object Oriented Basic Concepts
1. Classes
2. Objects
3. Data Abstraction
4. Encapsulation
5. Inheritance
6. Polymorphism

Classes
A class represents a template for different objects and describes how these objects are structured internally.
Objects of the same class have the same definition, both for the operations, and for the information
structures.

OR

It is a collection of objects and it doesn’t take any space in memory. It is also called a blueprint, or a
logical entity.

There are two types:

• Pre-defined

Their logic is already written somewhere, and we can use it by importing. For example - Scanner, Console, etc.
in Java

• User-defined

The logic for these classes is defined by the programmer.

4

sat
vik

gu
pta

.co
m

Objects
Fundamental entities used to model any system. Anything and everything can be an object. It contains
data(attributes) and operations(behaviors).

Encapsulation
The wrapping up of data and functions into a single unit. It is also known as information hiding concept.

Data is hidden from the outside world. The only way to get and modify the data is through operations that are
meant to operate on that data. This helps in minimizing impact of changes in the program.

Inheritance
Deriving a new class from existing class in such a way that the new class can access all the features and
properties of the existing class.

The existing class is called parent class, super class, base class. The new class is called child class, subclass, derived
class.

Polymorphism
The ability of an instruction,message,etc. to take many forms in an object oriented system is called polymorphism.

Sender of a stimulus (message) doesn’t need to know the receiver’s class. The receiver can belong to an arbitrary
class.

Achieved through function overriding.

For eg - Superclass OutputDevice, with Subclasses Printer and Monitor. Both have a function called ShowData().
Both implement it differently, and a program calling obj.ShowData() doesn’t need to know whether obj is a Printer
or Monitor. As long as it is an OutputDevice, the program can call the function. The behaviour of the function
depends on which subclass is being used.

Data Abstraction
Hiding of complexity of data and operations. Irrelevant details are hidden and important details are amplified to the
outside world.

Object Oriented Software Development (OOSD)
The major phases of software development using the object oriented methodology are:

1. Object Oriented Analysis

In this stage, problem is formulated. User Requirements are identified and then a model is built, based upon
real world objects.

The analysis produces models on how the desired system should function and how it must be developed.

The models do not include any implementation details, so that it can be understood by any non-technical
application expert.

2. Object Oriented Design

Object Oriented Design includes two main stages.

1. System Design

In this stage, the complete architecture of the desired system is designed. The system is conceived as a
set of interacting subsystems, that in turn are composed of a hierarchy of interacting objects, grouped
into classes.

System Design is done according to both the system analysis model, and proposed system architecture.

5

sat
vik

gu
pta

.co
m

Here, the emphasis is on the objects comprising the system, rather than the processes in the system.

2. Object Design

In this phase, a design model is developed based on both the models in the system analysis phase and the
architecture designed in the system design phase.

All the classes required are identified. The designer decides where

1. The new classes are to be created from scratch.

2. Any existing classes can be used in their original form,or

3. New classes should be inherited from the existing classes.

4. The associations between the identified classes are established and the hierarchy of the classes are
identified.

Besides this, the developer designs the internal details of the classes, and their associations, i.e, the
data structure for each attribute, and the algorithm for the operations

3. Object Oriented Implementation + Testing

In this stage, the design model developed in the object design is translated into code in an appropriate
programming language or software tool. The databases are created and the specific hardware requirements are
ascertained. Once the code is in shape, it is tested using different techniques in order to identify and remove
errors from the code.

Figure 1: Object Oriented Software Development

Coad/Yourdon Methodology
Known as Object Oriented Analysis

1. Identify classes and objects (study environment and document behaviours)
2. Identification of Structures (identify is-a and whole-part relationships)
3. Definition of Subjects (each structure is classified into a subject)

6

sat
vik

gu
pta

.co
m

4. Definition of Attributes
5. Definition of Services (methods)

Rumbaugh Methodology
Known as Object Modelling Technique (OMT)

1. Analysis Phase

1. Object Model - Static aspects of system

Classes and inheritance relationships are extracted from problem statement.

2. Dynamic Model - Behavioural aspects of object model and describes state of the system

Identifies states and events in classes identified by object model.

3. Functional Model - Represents functional aspects of the system

Depicts functionality of the system by creating data flow diagrams.

2. Sys Design - HLD is developed taking implementation env., including DBMS,etc. into account.

3. Object Design - Objects are defined in detail. Algorithms and operations defined.

4. Implementation

Booch Methodology
Object Oriented Design - Combines analysis, design and implementation. Iterative and incremental.

Macro Process

High Level Process

1. Establish requirements - Context diagram, prototypes
2. Analysis Model - Use case model, identification and prioritization of risks.
3. Design of Architecture
4. Evolution in the form of refinements - Implementation
5. Maintenance of delivered functionality - Post deployment activities

Micro Process

Lower level process.

1. Identification of classes and objects
2. Identification of semantics of classes and objects
3. Identification of relationships btw classes and objects
4. Specification of interfaces and implementation of classes and objects

Jacobson Methodology
OOSE methodology, 5 models:

1. Requirement model - Gather s/w requirements. Use cases, actors, etc.
2. Analysis model - Create robust and ideal structure of objects. Identify interface objects, DB related objects,

control objects, etc.
3. Design model - Refine the object w.r.t implementation environment. Objects become blocks.
4. Implementation model - Implements the objects (blocks) into modules.
5. Test model - Validate and verify the functionality of the system

7

sat
vik

gu
pta

.co
m

OO Modelling and UML
Object oriented modelling - constructing visual models based on real world objects - Helps in understanding problems
and developing documents and producing code. - Well understood requirements, robust designs, etc, etc.

Most popular methodologies - OOD (Booch), OMT (Rumbaugh), OOSE (Jacobson). All were combined into Unified
Modelling Language (UML).

• Language for visual modelling
• Allows specifying, visualizing, constructing and understanding various artifacts of the system.
• Models static and dynamic aspects of the system.

– Static aspects - Objects and their relationships
– Dynamic - Events, states and object interactions

Class, Responsibility, Collaboration (CRC)
1. Class - Template consisting of attributes and operations
2. Responsibility - Attributes and operations included in a class
3. Collab - Other classes that a class calls to achieve its functionality.

Traditional OO
The system is viewed as a collection of processes. The system is viewed as a collection of objects.

Data flow diagrams, ER diagrams, data
dictionary and structured charts are used to

describe the system.

UML models including use case diagram, class diagram,
sequence diagrams, component diagrams, etc. are used to

describe the system.
Reusable source code may not be produced. The aim is to produce reusable source code.

Data flow diagrams depicts the processes and
attributes.

Classes are used to describe attributes and functions that
operate on these attributes.

It follows a top-down approach for modelling the
system.

It follows a bottom-up approach for modelling the system.

It is non-iterative. It is highly iterative.

Process Framework
Software Process Framework is a foundation of complete software engineering process. It includes all the umbrella
activities.

8

sat
vik

gu
pta

.co
m

Figure 2: Process Framework

A generic process framework consists of 5 activities:

1. Communication

Requirement Gathering, extensive communication with customer

2. Planning

We discuss the technical related tasks, work schedule, risks, and required resources

3. Modelling

It is about building representations of things in the real world.

In modelling, a product’s model is created in order to better understand requirements

4. Construction

In SE, construction is the application of set of procedures that are needed to assemble the product. In this
activity, we generate the code and test the product in order to maintain better product.

5. Deployment

In this activity, a complete or a non-complete product or software, are presented to the customers to evaluate,
and give feedback.

On the basis of their feedback, we modify the products to supply a better product.

Umbrella Activities
Umbrella Activities are a set of steps or procedures that the SE team follows to maintain the progress, quality,
change and risk of the overall development task.

SE is a collection of 4 related steps. These steps are presented or accessed in different approaches, in different
software process models.

These steps of umbrella activities will evolve through the phases of the generic view of SE.

9

sat
vik

gu
pta

.co
m

1. Software Project Tracking and Control

Before the actual development begins, a schedule for development of the software is created. Based on that
schedule, the development will be done.

However, after certain period of time, it is required to review the progress of the development and to find out
the actions which are in need to be taken to complete the development,testing etc.

The outcome of the review may require the software development to be rescheduled.

2. FTR (Formal Technical Review)

SE is done in clusters or modules. After completing each module, it is good practice to review the completed
module and find out and remove errors so that the next module can be prevented.

3. SQA

The quality of software, such as UX, performance, load handling capacity, etc. should be tested, and make
sure it matches predetermined milestones.

This reduces the task at the end of the development process. It should be conducted by dedicated teams so
that the development can keep going on.

4. SCM (Software Config Mgmt)

It’s a set of activities designed to control change by identifying the work products that are likely to change
and establish relationships among them.

Defining mechanisms for managing different versions of these work products.

5. Document Preparation and Production

All the project planning, and other activities, should be documented properly.

6. Reusability Management

This includes the packing up of each part of the software project. They can be connected, or any kind of
support can be given to them, later to update or upgrade the software at user demand or time demand.

7. Measurement and Metrics

This will include all the measurement of every aspect of the software project.

8. Risk Management

It is a series of steps that helps a software team to manage and understand uncertainty. It’s a really good idea
to identify, assess, estimate its impact, estimate probability of threats, and establish a plan for what to do in
case the problem actually occurs.

Often combined in Object Oriented Analysis.

10

sat
vik

gu
pta

.co
m

SDLCs
Waterfall

Advantages

• Easy to understand
• Simple to implement
• Distinct phases

Disadvantages

• Large no of documents
• Requirements freezed at start
• Working product delivered late
• Slow, may take years
• Testing is difficult
• Real projects rarely sequential

11

sat
vik

gu
pta

.co
m

Prototyping

Advantages

• Stable requirements
• High quality system
• Low cost

Disadvantages

• Slower delivery

Iterative Enhancement
Waterfall stages in many cycles

12

sat
vik

gu
pta

.co
m

• Partial product delivered every cycle
• Complete product delivered after several cycles

Spiral Model
Risk-based.

13

sat
vik

gu
pta

.co
m

Rounds

1. Round 0 - Feasibility study
2. Round 1 - Concept of operation
3. Round 2 - Top level requirement analysis
4. Round 3 - Software design
5. Round 4 - Design, implementation and testing

XP - Extreme Programming
Agile methodology:

1. Team cohesiveness
2. Customer is part of the team
3. Requirement changes are accepted
4. Working software produced quickly
5. Progress is measured by working software and not documents
6. Iterative planning instead of iterative development. Plans are changed based on learnings.
7. Distributed leadership

14

sat
vik

gu
pta

.co
m1. User Stories - only contain estimate of time taken for the feature. Requirement details taken from customer

at development time.
2. Release planning -

• Developers estimate story time, and customer selects the order of story development.
• Large stories may be divided into substories.
• Developer may do exploration (spike) of story

3. Iteration Planning - Stories divided into tasks that are handed to developers. Working product released
after each iteration.

4. Dev and Unit tests -
• Important tasks chosen by customers and implemented.
• Pair Programming
• Refactoring
• Automated unit tests

5. Acceptance Testing - Automated black box acceptance tests are created from user stories. Customer runs
and verifies them.

6. Working product Released.

Object Oriented SDLCs
Difference btw Conventional and OOP SDLCs

Conventional OO
Methodology Functional, process driven Object Driven
Requirement DFD, ER, Data dictionary Use-case approach

Analysis DFD, ER, Data dictionary Object identification and description, attribute and function
determination

Design Structure chart, flowchart,
pseudocode

Class Diagram, Sequence Diagram, Object Diagram, UML

Implementation
& Test

Implement process, functions Implement objects and interactions among objects.

Documentation Many documents at the end of
each stage

Document may or may not be produced at the end of each
stage

Phases of OOSDLC

1. Object Oriented Requirement Analysis
2. Object Oriented Analysis
3. Object Oriented Design
4. Object Oriented Programming and testing

Fountain Model
• Reusability of source code
• Like a fountain with ideas and new features flowing from top to bottom
• Arrows represent iterations

15

sat
vik

gu
pta

.co
m

• Circles represent overlapping phases.

Rational Unified Process
• Adaptable Process Framework
• Iterative
• UML

Features

1. Iterative Dev - Series of iterations, feedback after each. Helps monitoring schedule and budget.
2. EFfective req. elicitation - Use case approach.
3. Visual Modelling - Build (abstracted) models that portray different views of the system. Use UML.
4. Reusable Components - Develop and use reusable components (independent subsystem that fulfills a clear

goal).
5. Ensure quality - Continuously assess quality. It becomes harder to maintain quality in later stages of

development.
6. Change control and management - Manage and track changes
7. Automated Testing - Functional as well as non-functional automated testing.

16

sat
vik

gu
pta

.co
m

Structure of RUP

Static Structure

Describes the process in terms of roles, activities, artifacts,disciplines and workflows.

Who(roles) does what (artifacts), when (workflows), and how(activities).

Roles perform activities to produce artifacts.

• Roles describe the position or function of a particular person. One person may have multiple roles.
• Activities describe the tasks/work performed by a person in a specific role.
• Artifacts are outputs produced during the development, design, etc. phases.They may be final products or

inputs to the next phases.
• Roles are associated with activities.
• Activities are associated with artifacts.
• Workflows consist of a series of activities to produce a particular output.
• Disciplines are used to organize a set of activities. RUP consists of 6 major disciplines.

1. Business Modelling
2. Requirement
3. Analysis & Design
4. Implementation
5. Testing
6. Deployment

Roles - Manager, Analyst, Tester, Developer, Designer.

Activities - Review Requirement, Generate use case, Define class, Prepare test plan.

Artifacts - SRS, Use case model, Class model, Design document, Source code, Test plan, user manual.

17

sat
vik

gu
pta

.co
m

Dynamic Structure

Organized along time. It has 4 phases.

1. Inception
2. Elaboration
3. Construction
4. Transition

These 4 phases run iteratively. Each iteration produces a new version of the software.

Inception

• Initial Stage, non-iterative.
• How feasible is the project, what are the risks, what are the high level requirements, how long will it take?

Essential Activities:

• Scope and boundary of project
• Cost And schedule
• Iteration Plan
• High level risks
• Significant use cases and actors.

Artifacts produced:

• Vision Document
• Business Model
• Iteration Plan
• Initial Use case
• Prototype
• Project Glossary

18

sat
vik

gu
pta

.co
m

• Risk Assessment
• Software Development Plan
• Software Tools

Elaboration

• Most critical phase.
• Planning and architectural design
• Elaboration is done for each use case in the current iteration.

Essential Activities:

• Establishment and validation of architectural baselines
• Design use case model
• Select components and create policies for their purchase and usage
• Address significant risks
• Detailed iteration plan
• Prototypes

Artifacts produced:

• Updated risk list
• Use case model
• Detailed iteration plan
• Software architecture description document
• Design and data model
• Implementation model
• Development case
• Test plan
• Test automation architecture

Construction

• Product constructed on the basis of architecture and design of elaboration phase.
• Testing also done
• Remaining requirements determined
• Deployable product constructed.

Essential Activities:

• Optimize work by avoiding rework and unnecessary coding
• Assess and verify quality
• Test all functionality of the system (unit, system and integration test)

Artifacts produced:-

• Software Product
• Test suite
• Test plan
• Documentation manual
• Deployment plan
• Design model
• Implementation model
• Training material
• Iteration plan (for transition phase)

Transition

• Usable product of sufficient quality has been produced.
• Product handed over to customer.
• Delivering, training users and maintaining software.
• Beta releases, bug fixes, enhancement releases.

19

sat
vik

gu
pta

.co
m

Artifacts produced:

• Product release
• Beta release report
• Release notes
• User Manual
• Training material

Software Requirements
A requirement is defined as a condition or capability to which a system must conform. It describes the “what” of
the system, not “how”.

Characteristics of a Good Requirement
• Correct
• Unambiguous
• Complete
• Consistent
• Verifiable
• Traceable
• Modifiable
• Clear
• Feasible
• Necessary
• Understandable

Identification of Stakeholders
Every person who is affected by the system (directly or indirectly) is a stakeholder.

Internal People of Customer’s Organization

This can be both customers and users. Customers are those who ask for the software to be developed, request
changes, approve the software, and also pay for the system. Users are those who use the system after it has been
deployed. Customer’s preferences are given more importance compared to user.

External People of Customer’s Organization

Includes consultants, domain experts, maintenance people, etc.

Internal People of Developer’s Organization

Everyone involved in the development of the system - developers, programmers, testers, project managers, graphic
designers, etc.

External People of Developer’s Organization

Any external people involved in the development of the software. Domain experts, consultants, third party testers,
etc.

Functional vs Non-Functional Requirements
Functional

• They describe what the software will do.
• They’re also called product features.
• They tell what the customer expects from the system.
• Sometimes they specify what the software should not do.

20

sat
vik

gu
pta

.co
m

Non-Functional

• They tell about the quality of the software.
• Describe how well the software does what it’s supposed to do.
• Include stuff like reliability, usability, maintainability, availability, etc.
• Also called quality attributes.

Requirement Elicitation Techniques
Techniques to understand what exactly the customer wants, i.e, to translate vague wants of customers into concrete
requirements that can be formalized and written down.

Interviews
• Easy and simple technique

• Can be formal or informal (Structured/non-structured)

• Informal has free flow of discussion.

• A questionnaire may be given to the stakeholders before the interview. We can ask any questions in the
questionnaire, and get clarifications and remove ambiguities during the interview.

Figure 3: Structured Interview

• Based on discussion with each stakeholder, we prepare a list of requirements of each stakeholder

• We then combine all the captured requirements , remove redundancies, inconsistencies and ambiguities.

Brainstorming
• Group discussion
• Various levels of stakeholders may be present together
• Projectors, whiteboards should be there. Free flow is encouraged and criticism is not allowed.
• Creativity is encouraged.
• Facilitator is there who handles conflicts, bias, etc.

21

sat
vik

gu
pta

.co
m

• Ideas are written down in simple way so everyone can understand them. Incomplete ideas are also written so
they can be discussed later.

• IRD (Initial Requirement Document) is generated from this.

Facilitated Application Specification Technique (FAST)

• Team-oriented approach similar to brainstorming.
• Customers and developers work together to finalize requirements. Facilitator manages everything.
• Facilitator may be customer, developer or outsider.

Guidelines

• Conducted at neutral site.
• Rules should be created and given to everyone in advance.
• Free flow of ideas
• Facilitator gives overview of the project.
• Something like projector, stickers, charts, whiteboard, etc. should be present so everyone can see all the ideas.
• Long debates and criticism should be avoided.

Preparation

Each member needs to create the following things

• Objects
– that are part of the environment of the system
– that are produced by the system
– that are used by the system

• Services that interact with the objects
• Constraints (size, cost)
• Performance criteria (speed, accuracy)

Activities

• Each member presents their lists
• A group is created to create a consolidated list
• The consolidated list is presented and further discussions happen under the facilitator’s directions. Changes

may be made to the list
• Few small groups may be created to draft mini-specifications
• Each subteam presents the mini-specs to all the FAST attendees. Discussions and changes happen.
• List of issues is prepared
• Validation criteria is decided for each requirement,i.e, how will we check that this requirement has been fulfilled
• Subteam creates the final draft for the specification. Final draft is prepared using inputs of all the meetings

and stakeholders.

Prototyping
• Prototyping is rapid development of a system for the purpose of understanding the requirements
• Expensive
• Simplified version (prototype) of the system is created and shown to the customers
• Feedback and views is taken.
• Helps understand requirements
• Prototype should be discarded, but experience and feedback gained while developing it should be used when

creating the actual system.
• Should be developed quickly. Internal structure of the prototype is not very important.

Use Case Approach
• Generally for OO systems

22

sat
vik

gu
pta

.co
m

• Describes only functional requirements
• Use case describes who does what with the system, for what goal. It may include alternate flows.
• Doesn’t consider or care about internal details of the system.

Terms
• Use case - structured outline for description of requirement, written in natural language.
• Use case scenario - Instance of a use case. Represents a path through a use case. A use case may contain

many such paths.
• Use case diagram - Graphical Representation of a use case.
• Actors - Actors is someone/something that interacts with the system, but lies outside the system.

Relationships between Use Cases
Extend Relationship

• Used to model an alternative/special path of the use case that may not always occur.
• Extends the functionality of the use case.

Used in the following way

• Normal use case occurs, till the special condition occurs for new use case
• New use case is inserted and executed
• After new use case finishes, the normal use case resumes.

For e.g, a student returns a book to the library. It is possible that the book is late. In that case, we will need to
calculate the fine for the book. Therefore, the Return Book use case will be extended by Calculate Fine Use
case.

23

sat
vik

gu
pta

.co
m

Include Relationship

Repeated functionalities in many use cases can be modelled into include relationship, using a singe use case.

For e.g, many use cases may require the Print function, so it can be converted into a separate use case and included
in the other use cases.

Use Case Description
Should contain :

• Use Case Title
• Brief Description
• Actors involved
• Flow of events

– Basic Flow
– Alternate Flow

• Special Requirement
• Precondition
• Postcondition
• Extension point (related use cases)

Scenario Diagrams
Scenario is a particular path through the use case. In scenario diagrams:

• Basic flow is represented using straight lines.
• Alternate flows represented using curved lines
• Preconditions checked at the start, postconditions at the end.

24

sat
vik

gu
pta

.co
m

Figure 4: Scenario Diagram

Object Oriented Analysis
Identifies and defines the real world objects that are involved in interaction with the system.

Classes
Class is a collection of objects with common attributes and operations. It is a template that groups attributes and
operations together.

Entity Classes

• Persist longer in the system.
• Stored and maintained for a long time
• Contain information needed to complete a task
• AKA domain classes.
• May be used in multiple use cases.

25

sat
vik

gu
pta

.co
mFigure 5: Entity Class

Interface Classes

• Handle interaction in the system.
• Provide interface between actors and the system.
• AKA boundary classes.
• Used to model windows, buttons, etc.
• Interface class usually lasts while the use case is active.
• Generally we need an interface class for each use case. Use cases may also have more than one interface class.
• Dependent on surroundings/environment of the system. Entity and control classes are not dependent on

environment or surroundings.

Figure 6: Interface Class

Control Class

• Coordinate and manage entity and interface classes.
• Puts together things so that a use case can be completed.
• Represents dynamics of the system.
• Handles tasks and sequence of events.
• A control object is created when the use case starts and is deleted when the use case finishes.
• Generally, each use case should have its own control class.

26

sat
vik

gu
pta

.co
mFigure 7: Control Class

Relationships between Classes

Name and Description Notation

Association is a structural connection, usually bidirectional.
Shows that two classes are linked in some way. May also have a
name associated with it. For e.g, IssueBookController manages
Transaction. manages is an association with a name.

Aggregation shows a whole-part relationship, i.e, class B is part
of class A. E.g - Book is part of Library. In the notation, the
diamond should represent the library, i.e, the whole part.

Composition is strong aggregation. In composition, class B is
part of Class A, and only Class A. It cannot belong to another
class, say C. In aggregation, a class can belong to/be part of 2
classes. For e.g, book can be part of Library as well as Computer
Department. But Computer Department can belong to only one
University.

Dependency - represents that a class depends on another class.
Unidirectional. It means that one class is affected by changes in
the other class, because it uses that class. If class A depends on
class B, we show dependency through a dotted arrow from A to B.

27

sat
vik

gu
pta

.co
m

Name and Description Notation

Generalization - Relationship between parent and child class.
Represents inheritance (is a) relationships. For example, Professor
is an Employee, SecurityGuard is an Employee, Clerk is an
Employee, etc. Represented by an arrow from child class towards
parent class.

Class Diagram
Class diagrams should contain details about each classes as well as the relationships between them. For each class,
we need to write:

• the class name
• Type (entity/interface/control)
• Attributes and their types
• Operations

Sequence Diagrams
• Objects are shown in rectangles.

• Lifetime/Lifeline of the object goes down along the y-axis. It represents the amount of time the object is alive
in the use case.

• Focus of control is represented by a vertical rectangle. It shows the time period for which an object
is performing a specific event. An object may have multiple such focuses of control during the use case.

28

sat
vik

gu
pta

.co
m

• Messages are information or commands passed from one object to another. They are represented using
arrows.

– Simple Messages are interactions that may not be a procedure call.

– Synchronous Messages are those in which the sending object waits for a response from receiving object.

Figure 8: Synchronous Message

– Asynchronous Messages are those in which the sender doesn’t wait for a response.

29

sat
vik

gu
pta

.co
m

Figure 9: Asynchronous Message

– Procedure call - Method call

– Return Message - Return value for an incoming message. It’s not necessary that a message always has
a return message.

30

sat
vik

gu
pta

.co
m

Figure 10: Return Message

Centralized vs Decentralized Control Structures

Centralized Decentralized
Controlling object responsible for flow of messages and
order of events.

Participating objects can communicate with each other
without any controlling object.

Better because any change means only controller needs
to be changed.

Better when messages are strongly coupled with each
other.

Allows new operations to be added easily
Parts of functionality can be reused

Extended use cases can also be added to sequence diagrams easily.

31

sat
vik

gu
pta

.co
m

Figure 11: Sequence Diagram Example - Return Book

Figure 12: Sequence Diagram of Return Book with another use case (calculate fine) added to it

32

sat
vik

gu
pta

.co
m

Collaboration Diagrams
They are similar to sequence diagrams. Objects are shown as rectangles, and actors using stick figures. Classes are
shown using the representation for that particular type of class (entity, interface,control).They don’t show events
being time ordered. Messages are shown using arrows. Objects that interact with each other are connected by links
(straight lines). One link can be used to pass many messages.

The time for which the object is alive, or till when it’s participating in some event, is not shown.

Events are ordered using numbers written next to the message.

Return messages are shown using dotted arrows.

Figure 13: Collaboration Diagram for Return book

OO-Design
Consists of the following steps.

1. Sequence and Collaboration Diagrams
2. Refinement of classes and relationships - if we need additional features, or need to change existing features, we

should do so here.
3. Identify operations
4. Create detailed class diagram - Use the refined classes, relationships and identified operations to create a new

detailed class diagram.
5. Detailed design
6. Software Design Document
7. Generation of test cases from use cases

Identification of Operations
We create a table for our system. It includes:

• the various classes

33

sat
vik

gu
pta

.co
m

• the operations inside each class
• Parameters for each operation
• Parameter type for each operation
• Return value and return type for each operation
• Description for the operation

For example,

Figure 14: Identification of Operations

Detailed Design and Software Design Document
We create a detailed design for each class separately. It should include:

• Class Name
• Class Type
• Description
• Attributes along with their types
• Operations, along with their parameters, type of each parameter, and return type of the operation itself.

Generation of Test Cases from Use Cases
It is a five step process

1. Create use case scenario matrix
2. Identify variables in a use case
3. Identify different input states of each variable
4. Design test case matrix

34

sat
vik

gu
pta

.co
m

5. Assign actual values to input variables.

Terminology

• Test Case executes one particular path of the program, or verifies a requirement.
• Test suite - Set of test cases.
• Test coverage - how much of the system to the test cases evaluate (50%, 70%, etc.)
• Test result - A repository where all results of tests are kept.

For each test case, we need to show:

• Test Case ID
• Scenario name and description
• All the variables, along with their input state (valid or invalid)
• Expected output
• Remarks

When we get to step 5 (assigning actual values), the input state (Valid/invalid) is replaced with actual values.

On running the test, we also add another column - Actual Output. This should be the same as the Expected
Output.

For e.g, for the use case issue book:

35

sat
vik

gu
pta

.co
m

This is the scenario diagram. Scenario matrix will be as shown:

Figure 15: Scenario Matrix

Test Case Matrix will be as shown:

36

sat
vik

gu
pta

.co
m

Putting actual values, it will look like:

37

sat
vik

gu
pta

.co
m

OO Design Principles for Software Quality
• Cohesion - should be high
• Coupling - should be low
• Design clarity - Design should be implemented correctly, concisely, unambiguously and consistently. Names

of the classes, attributes, operations should convey their meaning/purpose.
• Class Hierarchy Depth - Unnecessary use of inheritance/generalization should be avoided.
• Simple Classes and Objects - Classes shouldn’t have too many attributes/operations. Class definition

should be simple clear and understandable.

Good Programming Practices
• Meaningful variable names
• Documentation
• Use global data rarely.
• Use consistent formatting
• Use error messages
• Complicated if statements must be avoided. Keep nesting of if statements to minimum.

38

sat
vik

gu
pta

.co
m

Software Testing
Testing is the process of executing a program with the intent of finding faults. It’s the process of verifying the
outcomes of every phase of development and validating the program by executing it with the intention of finding
faults.

Verification Validation
Process of reviewing documents and programs with
the intention of finding faults.

Process of evaluating a system at the end of development to
see if it satisfies the requirements.

Static Testing Dynamic testing
Program Not Executed Program is executed
Inspections, walkthroughs, reviews. Black/White box testing, non-functional testing
Before validation After verification
Prevention of Errors Detection of Errors
Are we building the product right? Are we building the right product
About the process About the product.

Verification Techniques
Peer Reviews

• Simple, old and informal
• Applicable to every document and program
• We give the document/program to someone else and ask them to review it and find faults (if any)
• Faults may be reported using a formal report or verbally.
• Effective for small size documents/programs.

Walkthrough

• Group activity
• More formal
• Author presents the document/program to a group of 2-7 people.
• No prior preparation is expected.
• Group can ask questions and make observations, etc. Observations are discussed and changes are suggested.
• The author prepares a detailed report as per changes.

Inspections

• Formal, systematic and effective.
• AKA formal review, formal technical review, etc.
• Group of 3-6 people is there. An independent presenter prepares and understands the document and presents

it. The group is given the document earlier and given time to prepare for the inspection.
• Impartial moderator (a senior person) should be the head of the group.
• The meeting is recorded.
• Observations, suggestions, potential faults, etc, are taken and noted.
• Checklist may be used.
• Moderator prepares a report and circulates it to participants. People may suggest changes in the report.

Checklist

Checklist contains important information that a particular document must contain. We can verify the document
against our checklist.

It helps identifying duplicate information, missing information, and wrong information.

Every document may have a different checklist.

E.g.

39

sat
vik

gu
pta

.co
m

• SRS
– Are objectives properly stated?
– Is SRS approved by customer?
– Is layout of screens well designed?
– Has IEEE standard been followed?
– Are major functions stated?

• OO Analysis
– Are all types of classes identified?
– Is any class missing?
– Are relationships between classes identified correctly?
– Are classes well named?

• OO Design
– Are all objects in diagrams identified correctly?
– Are interaction diagrams present for each use case?
– Are all messages passing correct parameters?

etc.

Functional Testing
• Checks functionality of the system.
• Inputs are given and observed output is compared to expected output.
• Program is treated as a black box. Only functionality is tested, not internals.

Boundary Value Analysis
• Focuses on values close to the boundary of the input domain, because those tests have more chances of failing.
• Checks

– Min value
– Max value
– Just above min value
– Just below max value
– Avg value

For e.g, for two inputs 100 ≤ a ≤ 1000 and 200 ≤ b ≤ 1200, boundary value test cases are:

S.No a b
1 100 700
2 101 700
3 550 700
4 999 700
5 1000 700
6 550 200
7 550 201
8 550 1199
9 550 1200

Only tests a single fault at once. i.e, a and b both won’t simultaneously have boundary conditions. Total number of
cases = 4n + 1.

Robustness Testing

Also tests just below minimum and just above maximum, as well as all the test cases tested in boundary value. The
program should identify these values as invalid.

Total number of cases = 6n + 1

40

sat
vik

gu
pta

.co
m

Reference : Object Oriented Software Engineering - Yogesh Singh,Ruchika Malhotra.

Worst Case Testing

We don’t assume single fault here. Many failures can occur together. Any combination of inputs may have:

• min value
• max value
• just above min
• just below max
• average value

Total number of cases = 5n

Robust Worst Case

We add just below min and just above max to worst case testing. Total number of cases = 7n.

Equivalence Class Testing
• Divide input domain into many classes (groups). Any test case in the class should be equivalent to testing the

entire class.
• For e.g, for a,b example above, create classes :

– I1 = {100 ≤ a ≤ 1000 and 200 ≤ b ≤ 1200}. (a and b both valid)
– I2 = {100 ≤ a ≤ 1000 and b < 200}. (a valid b invalid)
– I3 = {100 ≤ a ≤ 1000 and b > 1200}. (a valid b invalid)
– I4 = {a < 100 and 200 ≤ b ≤ 1200}. (a invalid b valid)
– I5 = {a > 1000 and 200 ≤ b ≤ 1200}. (a invalid b both valid)
– Similarly 4 more cases will be there when both inputs are invalid (a<100,b<200), (a>1000,b<200),(a<100,b>1200),(a>1000,b>1200)

Structural Testing
The entire program is evaluated. We go into the internal structure of the program to test it. This is white box
testing.

Path Testing
• For each line in the code, draw a node. Connect it to the next line. Do the same for loops.
• For if conditions create branches.
• Merge lines that don’t have branching into a single node.

Eg:

Code:
1. int a;
2. input(a);
3. print("you entered",a);
4. if (a%2==0)
5. {
6. print("a is even");
7. }
8.else
9. {
10. print("a is odd");
11. }
12. print("Goodbye")

The graph will look like:

41

sat
vik

gu
pta

.co
m

1
|
v
2
|
v
3
|
v
4

/ \
5 8
| |
v v
6 9
| |
v v
7 10
| |
v v
12<--11

Remove sequential nodes.
S
|
v
N1
|
v
N2

/ \
N3 N4
\ /

N5
|
v
N6

This is the final DD graph

Independent Paths in DD graphs are paths that introduces at least one new node or edge in its sequence.

Cyclomatic number= max number of independent paths.

It depends only on the decision structure of G. Addition/removal of functional statements doesn’t affect cyclomatic
number.

V(G) = Cyclomatic Number = e-n+2P

e = edges

n= nodes

P = number of connected components

V(G)= number of regions of program graph.

For activity diagrams,

V(G) = Transitions - activities/branches + 2P

42

sat
vik

gu
pta

.co
m

Class Testing
• Done by developers who coded the class
• Each operation is tested
• Stubs or drivers may be written to execute the test.
• Instances of classes are created and tested.
• Unspecified behaviour cannot be tested, so it should never be implemented.
• Testing is done by identifying pre and post conditions for each operation in the class, and testing if they are

valid on execution.

Mutation Testing
• We make small changes to the program, such as replacing < by <= , changing (a+b) to (b+c), removing a

line, adding a line, changing public to private,etc. Only one small change is made (Generally)
• Changed programs are called mutants
• We run all our test cases against the mutants.
• If the mutant fails any test case, it is a killed mutant. If the mutant passes all test cases, it is a live mutant.
• We calculate mutation score as Mutants_Killed

T otal_Mutants
• Mutation score should be as high as possible.
• For every live mutant, we add a new test case to the test suite that will ensure the mutant is killed.

Levels of Testing
Unit Test

• Testing a single class or operation of the class.
• Generally we choose a class as a unit.
• Testing classes that have parents is done by flattening the class, which means merging the parent class and

child class. This is done so we can test the attributes and operations present in the parent class. Flattening
must be undone after testing.

• Instance of class is created and operations are called with appropriate parameters.

Integration Test
• Test various combinations of different units.
• We don’t have hierarchical control structure in OO systems, so top-down, bottom-up integration testing isn’t

valid here.
• Integration testing in OO systems is basically interclass testing.
• The most popular way is thread based testing. We integrate classes that work together to respond to some

input. Such classes make up a thread. There can be many threads. Expected vs Observed output of each
thread is calculated and compared.

• Another way is to test basic and alternative flow of each use case. A path may require one or more classes.
• Third way is cluster testing. Classes are combined to show one collaboration.

System Testing
• Performed after unit and integration testing.
• The software is tested with its environment.
• System = s/w + h/w + other associated parts.
• Non-functional requirements are also tested here.

Acceptance Testing
• This is carried out by customers.
• May be adhoc or systematic.
• If software isn’t developed for particular systems, we identify potential customers and perform testing.

43

sat
vik

gu
pta

.co
m

– If the testing is done at the developer’s site under their supervision, in a closed environment, this is called
alpha testing.

– Another approach is giving the software to limited amount of people and asking them to use it. This is
beta testing.

44

	Object Oriented Software Engineering
	Object Oriented
	Software Engineering

	Software
	Program
	Documentation
	Operating Manual
	Characteristics of Software

	Object Oriented Basic Concepts
	Classes
	Objects
	Encapsulation
	Inheritance
	Polymorphism
	Data Abstraction

	Object Oriented Software Development (OOSD)
	Coad/Yourdon Methodology
	Rumbaugh Methodology
	Booch Methodology
	Macro Process
	Micro Process

	Jacobson Methodology
	OO Modelling and UML
	Class, Responsibility, Collaboration (CRC)

	Process Framework
	Umbrella Activities

	SDLCs
	Waterfall
	Prototyping
	Iterative Enhancement
	Spiral Model
	Rounds

	XP - Extreme Programming

	Object Oriented SDLCs
	Phases of OOSDLC
	Fountain Model
	Rational Unified Process
	Features
	Structure of RUP

	Software Requirements
	Characteristics of a Good Requirement
	Identification of Stakeholders
	Internal People of Customer’s Organization
	External People of Customer’s Organization
	Internal People of Developer’s Organization
	External People of Developer’s Organization

	Functional vs Non-Functional Requirements
	Functional
	Non-Functional

	Requirement Elicitation Techniques
	Interviews
	Brainstorming
	Facilitated Application Specification Technique (FAST)
	Guidelines
	Preparation
	Activities

	Prototyping

	Use Case Approach
	Terms
	Relationships between Use Cases
	Extend Relationship
	Include Relationship

	Use Case Description
	Scenario Diagrams

	Object Oriented Analysis
	Classes
	Entity Classes
	Interface Classes
	Control Class

	Relationships between Classes
	Class Diagram

	Sequence Diagrams
	Centralized vs Decentralized Control Structures

	Collaboration Diagrams
	OO-Design
	Identification of Operations
	Detailed Design and Software Design Document
	Generation of Test Cases from Use Cases
	Terminology

	OO Design Principles for Software Quality

	Good Programming Practices
	Software Testing
	Verification Techniques
	Peer Reviews
	Walkthrough
	Inspections
	Checklist

	Functional Testing
	Boundary Value Analysis
	Robustness Testing
	Worst Case Testing
	Robust Worst Case

	Equivalence Class Testing

	Structural Testing
	Path Testing

	Class Testing
	Mutation Testing
	Levels of Testing
	Unit Test
	Integration Test
	System Testing
	Acceptance Testing

