
sat
vik

gu
pta

.co
m

Computer Networks

Satvik Gupta

May 15, 2023

Contents
Introduction 4

Communication link: . 4
Goals of Networks . 4
Data communication . 4

Components of Effective Data Communication . 4
Components of Data communication system . 4
Types of Communication . 4
Physical Structure . 4

Physical Topology 4
Bus Topology . 5
Ring Topology . 5
Star Topology . 5
Mesh Topology . 6
Tree Topology . 6

Networks Based on Geographical Area 7

OSI Model - Open Systems Interconnection 7
Data in layers: . 7

Physical Layer 8
Transmission Media . 8

Wired/Guided Media: . 8
Wireless/Unguided Media: . 9

Propagation Methods . 9
Bands . 10
Switched Networks . 10
Network Architecture . 11
Types of Communication on the basis of Connection . 11

Connection-Oriented . 11
Connectionless . 11

TCP/IP Stack 11
Internet Protocol (IP) . 11
Transmission Control Protocol (TCP) . 11
User Datagram Protocol (UDP) . 11

Data Link Layer 12
Delay . 12

Transmission Delay . 12
Propagation Delay . 12
Queueing Delay . 12

1

sat
vik

gu
pta

.co
m

Processing Delay . 12
Framing Techniques . 12

Character Count . 12
Flag (Character Stuffing/Byte Stuffing) . 13
Bit Stuffing . 13

Error Detection and Control . 13
Parity Check . 13
Hamming Code . 14
Checksum . 16
CRC (Cyclic Redundancy Check) . 17

Flow Control . 18
Stop & Wait ARQ (Automatic Repeat ReQuest) . 18
Formulas . 19
Go Back N . 20
Selective Repeat (SR) . 20
Data Encoding Techniques . 21

Media Access Sublayer 23
Media Access Control and Multiple Access Protocols . 23
Random Access/ Contention Methods . 23

Pure Aloha . 23
Slotted Aloha . 24
CSMA (Carrier Sense Multiple Access) . 24
Persistence Methods for CSMA . 25
CSMA with Collision Detection (CSMA/CD) . 25

Network Layer 25
Classful Addressing . 26

Class A . 26
Class B . 26
Class C . 27
Class D . 27
Class E . 27

Classless Addressing . 28
Rules for Classless Addressing . 28

Subnetting . 28
Subnetting in Classful Addressing . 29
Subnetting in Classless Addressing . 30
Variable Length Subnet Masking (VLSM) . 30

Header Formats for IP Protocols . 31
IPv4 Header Format . 31
IPv6 Header . 35

Congestion Control . 36
Leaky Bucket . 36
Token Bucket . 36

Routing Protocols . 37
Distance Vector Routing (DVR) . 37
Link State Routing . 37
Routing in Subnets . 37

Network Protocols . 37
ARP (Address Resolution Protocol) . 37
NAT (Network Address Translation) . 38

Transport Layer 38
Responsibilities . 38
Socket Address and Port Numbers . 39

Port Number Types . 39

2

sat
vik

gu
pta

.co
m

. 39
TCP (Transmission Control Protocol) . 39

Characteristics . 39
TCP Header . 40
TCP Connection Establishment . 42
TCP Connection Termination . 42
TCP Congestion Control . 43
Wrap-Around . 44
TCP Window Scaling . 44
TCP Timers . 45

UDP . 46
Characteristics . 46
Header . 46
UDP Applications . 46

TCP vs UDP . 47

Application Layer 47
Paradigms . 47
File Transferring . 47

FTP (File Transfer Protocol) . 47
FTAM (File Transfer Access Management) . 48

Email . 48
SMTP . 48
Message Access Agents - POP and IMAP . 49
MIME . 49
Extended SMTP (ESMTP) vs SMTP . 49

DNS . 49
DNS Server Hierarchy . 50
DNS Name Hierarchy . 50

Session Layer 50
Functions of Session Layer . 50
Design Issues . 50
RPC (Remote Procedure Call) . 50

Issues in RPC . 51
Types of RPC . 51

Synchronous RPC . 51
Asynchronous RPC . 51
One-Way RPC . 51
Deferred Synchronous RPC . 51

Failure Semantics in RPC . 51

Presentation Layer - Security 51
Types of Cryptosystems . 51

Symmetric . 51
Asymmetric . 52

Types of Ciphers . 52
Substitution Ciphers . 52
Transposition Ciphers . 52
One-Time Pad . 53

RSA . 53
Steps . 53
Usage . 54
Properties of RSA . 54

Securely sending messages (Secure Channels) . 54
Digital Signatures . 55
Diffie-Hellman Key Exchange . 56

3

sat
vik

gu
pta

.co
m

Introduction
Network: Connection between objects or a group of objects

Computer network: A set of communication elements connected by communication link.

Communication link:
• Wired: Optical Fiber, Coaxial Fiber, Twisted pair cable.

• Wireless: Radio wave, satellite connection, microwave.

Goals of Networks
• Efficient resource sharing
• Scalable
• Reliability
• Communication
• Application of Networks
• Remote data access.
• Remote software access.
• Emailing
• FIle transfer

Data communication
It is the exchange of data between two or more devices via some transmission medium

Components of Effective Data Communication

• Delivery: The data should be delivered to the destination it was intended to.
• Accuracy
• Timeliness
• Jitter free

Components of Data communication system

• Sender
• Receiver
• Message
• Protocols
• Communication/Transmission medium

Types of Communication

• Simplex: Unidirectional communication.
• Half Duplex: Bidirectional communication but only one direction at a time.
• Full Duplex: Two simplex connections in opposite directions.

Physical Structure

• Point to point
• Multipoint

Physical Topology
It tells how systems are physically connected through links. It is a geometric representation of the network.

4

sat
vik

gu
pta

.co
m

Bus Topology
Only one connection.

Figure 1: Bus Topology

Advantages

• Easy to install
• Cheap
• Easy to expand

Disadvantages

• Only one device can transmit at a time, which makes it low speed.
• Single point of failure - faulty cable can bring down the whole system.

Ring Topology

Figure 2: Ring Topology

Tokens are used to transfer data. Only one system can hold the token at a time. Token passing is done.

*Advantages

• Cheap

Disadvantages

• Not easy to install.
• Not easy to expand.
• If one system/one link goes down the entire ring will go down.

Star Topology
Uses a central hub.

5

sat
vik

gu
pta

.co
mFigure 3: Star Topology

_ Advantages and disadvantages same as of any centralized system_ Hub can also be expensive.

Mesh Topology

Figure 4: Mesh

Advantages

• Less traffic
• No single point of failure
• Messages can be sent directly without any routing

Disadvantages

• Cabling cost will be higher
• Maintenance cost will be higher.

Tree Topology
Tree structure.

Figure 5: Tree Topology

6

sat
vik

gu
pta

.co
m

Networks Based on Geographical Area
• LAN - Local Area Network
• MAN - Metropolitan Area Network
• WAN - Wide Area Network

Differentiate based on cables, cost, etc.

OSI Model - Open Systems Interconnection
Given by ISO.

The OSI model is a layered framework for the design of network systems that allows communication btw all types of
computer systems.The purpose of OSI model is to facilitate communication btw different systems without requiring
changes to the logic of underlying hardware and software.

Figure 6: OSI

Data in layers:

S.No Layer Data Responsibility Protocols
1 Application

Layer
Data To allow access to network resources Telnet,

SMTP,DNS,
HTTP

2 Presentation
Layer

Data To translate, encrypt and process the data

3 Session Layer Data To establish, manage and terminate session
4 Transport

Layer
SegmentProcess to Process msg delivery, error recovery TCP, UDP

(Port/Socket
Address)

5 Network Layer Packet Move packet from source to destination. IP, ARP, RARP,
ICMP

7

sat
vik

gu
pta

.co
m

S.No Layer Data Responsibility Protocols
(Logical/IP
Address)

6 Data Link
Layer

Frame Hop to hop delivery, organize the frames IEEE 802 Std.,
TR,PPP
(Physical/MAC
Address)

7 Physical Layer Bit Transmit bits over a medium, provide mechanical and
electrical specification

Transmission
media

ARP - Address Resolution Protocol - Maps IP to MAC.

RARP - Reverse Address Resolution Protocol - Maps MAC to IP.

Physical Layer
It is responsible for moving physical bits. It defines:

• a transmission medium (wireless/wired)
• types of encoding to be used
• data rate
• synchronization of bits
• physical topology

Transmission Media
Wired/Guided Media:

• Optical Fiber

Figure 7: Transmission through Optical Fiber

• Coaxial Fiber

Figure 8: Coaxial Fiber

8

sat
vik

gu
pta

.co
m

• Twisted pair cable

Figure 9: Twisted Pair Cable

• Unshielded Twisted Pair (USTC)

Figure 10: USTC

• Shielded Twisted Pair (STC)

Figure 11: STC

Wireless/Unguided Media:

Radio wave, microwave, and infrared

Electromagnetic Spectrum for Wireless Communication

• 3KHz - 300 GHz => Radio Waves and Microwaves
• 300Ghz - 400 THz => Infrared
• 400 THz - 900 Thz => Light waves (not used for transmission)

Propagation Methods
Ground, Sky, Line of Sight

9

sat
vik

gu
pta

.co
m

Figure 12: Propagation Methods

Bands

Band Range Propagation Application
Very Low Freq. 3-30 KHz Ground Long range radio navigation

Low Freq. 30-300KHz Ground Radio and Navigation Locator
Medium Freq. 300KHz-

3MHz
Sky AM radio

High Freq 3-30 MHz Sky Citizen Band(Ship/Aircraft Communication)
Very High Freq. 30-300 MHz Sky/Line of Sight Cellular Phone, Satellite
Super high freq. 3-30 GHz Line of Sight Satellite Communication

Extremely high freq. 30-300 GHz Line of Sight Radar/Satellite Communication

High Frequencies cannot travel through walls, lower frequencies can.

High Frequency have less distance, lower frequencies have higher distance.

Switched Networks
Large networks cannot have all nodes directly connected with each other. Therefore, to send data from one node to
another, it has to be sent through other nodes.

Suppose there’s a network with many nodes, and node A wants to send some data to node B. There are two ways of
doing so.

1. Packet Switching

Data is divided into small sized packets for transmission. This increased efficiency, reduces chances of lost
data,etc.

1.Virtual Circuit - Source establishes a (virtual) path that the data will follow. Each packet goes through
the same route.

2. Datagram Switching - Source doesn’t decide any route. It sends each packet to the next nodes. Each
node can decide where to forward the packets. Each packet may end up taking a different route. Packets
may be delivered in a different order.

2. Circuit Switching

10

sat
vik

gu
pta

.co
m

A special path is set up for the transmission, and the intermediate nodes are already decided before the data
transmission takes place. There is a dedicated path set up for the transmission of that packet.

3. Message Switching - Entire message is transferred between nodes. Each node stores the message, then
decides where to forward it. This is also called store and forward.

Network Architecture
Protocol is an agreement between two communicating parties on how the communication is to take place. Includes
things like format of data, speed, etc.

Networks are organized as a stack of layers. Each layer offers its services to the layer above it (like OSI). Between
each two layers there is an interface. Services are operations a layer provides to the layer above it. Protocols are
used to implement services.

Set of layers and protocols is called the Network Architecture.

List of Protocols used by a certain system is called Protocol Stack. We generally have one protocol per layer.

Types of Communication on the basis of Connection
Connection-Oriented

• Similar to telephone.
• Establish a connection, communicate, and then release the connection.

Connectionless

• Like postal system
• Each packet has the destination address,
• Each packet is routed independently through the system.

TCP/IP Stack
Internet Protocol (IP)

• Hosts can inject packets into any network.
• They will travel to destination independently.
• They may arrive out of order.
• Connectionless.
• Similar to postal service.

Transmission Control Protocol (TCP)
• Transport Layer
• Source and Destination communicate using this.
• It is connection-oriented, reliable. Provides no-error delivery.
• Handles flow control
• Converts incoming byte-stream (continuous data like video or large amount of text) into discrete messages.

Destination’s TCP reassembles them.

User Datagram Protocol (UDP)
• Transport Layer
• Connectionless, unreliable
• Faster than TCP.

11

sat
vik

gu
pta

.co
m

Data Link Layer
Delay
Transmission Delay

The delay taken for the host to put the data onto the transmission line.

Tt = L/B

where L is the size of the data, and B is the bandwidth.

Propagation Delay

Time taken by the last bit of the data to reach the destination (after it has been transmitted from host to transmission
media at the source.)

Tp = distance/velocity

Queueing Delay

Each packet waits in the buffer (at destination) before it is processed. The amount of time it waits is known as the
queueing delay.

Processing Delay

This is the time taken to process the packet. Includes checking headers, updating TTL, deciding where to forward
it,etc.

Queueing and Processing delays are generally taken to be zero, unless mentioned otherwise.

Framing Techniques
One of the major issue in framing is to decide how to specify the start and end of a frame.

One way to do this is to use fixed-size frames. For eg, if we say one frame is 50 bytes, then the destination’s data
link layer will know that after the first 50 bytes, the next frame has begun.

This can lead to wastage of space. If the data in a frame is only 10 bytes, we have to add 40 bytes of empty space.

Thus variable-sized frames are more preferred.

Framing techniques for variable-sized frames are given below.

Character Count

It involves simply adding the number of characters in a frame to the data-link header. Before each frame starts, the
number of characters in it is present.

For eg, we have 4 frames with lengths 3,4,2,5 characters respectively. Our data would look like:

(3)(frame1)(4)(frame2)(2)(frame3)(5)(frame4)

This isn’t used anymore, because a single bit error in the character count could lead to miscalculation of frames.
Count variable could also only hold a certain limit of number. For e.g, if count was specified as an 8-bit number,
the maximum value it can hold is 28 − 1 = 255. If our frame has more than 255, we would face issues.

Hence this isn’t used.

12

sa
tv

ik
gu

pt
a.

co
m

Flag (Character Stuffing/Byte Stuffing)

We use a special flag byte at the start and end of each frame. It is fixed so it can be recognized.

An issue with this is that the flag byte may occur “accidentally” in the data itself. This may cause the DLL to
assume the frame has ended even when it has not.

To solve this, we use a special ESC byte, which is also fixed. Accidental flag bytes have the ESC sequence inserted
before them, to tell the DLL that this FLAG is data and not the end of a frame.

If ESC occurs within the data “accidentally”, we escape it with another ESC.

Examples

A Flag B –> A ESC Flag B

A ESC B –> A ESC ESC B

A ESC Flag B –> A ESC ESC ESC Flag B

A ESC ESC B –> A ESC ESC ESC ESC B

Doesn’t work if the data isn’t 8-bit.

Bit Stuffing

A special bit pattern denotes start and end of frames. Generally, this is taken to be 01111110.

If the sender encounters the starting of this pattern in the data, it adds a 0 or a 1 before it ends so that the pattern
never occurs. The receiver will do the opposite and remove the stuffed 0s or 1s.

For e.g, for 01111110,

If the sender encounters a 0 followed by 5 consecutive 1’s, it adds a 0 before continuing. This ensures that 01111110
never occurs in the data.

The receiver will destuff these extra zeroes on its end.

01111110 –> 011111010

011011111111111111110010 –> 011011111011111011111010010

Error Detection and Control
Parity Check

Parity check is the simplest method of detecting errors. It involves using a single check bit after or before the frame.

We count the numbers of 1s and 0s in a particular frame. If it’s odd, check bit value is 1. If it’s even, check bit value
is 0.

101011 - Check bit=0 101001 - Check bit=1

This can only detect single-bit errors. If two bits (a 0 and a 1) are flipped, the number of 1s remains the same. 2D
parity check is more useful. The data is divided into rows and columns. Parity bit is calculated for each row and
column.

1 0 1 0 1 | 1
1 1 0 0 0 | 0
1 0 1 1 0 | 1
_ _ _ _ _ |
1 1 0 1 1 | 0

The final data becomes

13

sat
vik

gu
pta

.co
m

101011
110000
101101
110110

Hamming Code

Data - the original data to send

Redundant bits - bits that aren’t part of the original data. They have been added for error detection and correction.

Codeword - The final result that is sent to the receiver - combination of data and redundant bits.

Code is a collection of codewords.

Hamming Distance between two strings is the number of positions where the symbols are different. Only valid for
strings of equal length. We will use it for binary numbers.

For eg, hamming distance btw 101 and 100 is 1 (only last bit is different) btw 101 and 110 is 2 (2nd and 3rd bits are
different).

Hamming Distance of a Code is the minimum hamming distance between any two codewords in the code.

A code with a hamming distance of d can detect d − 1 bit errors, and correct ⌊(d − 1)/2⌋ errors.

For example, consider a code with the codewords 000 and 111. The hamming distance of such a code would be 3.
We should be able to detect 2-bit errors, and correct 1-bit errors.

Suppose we were transmitting the codeword 000 ande during transmission bit flips occurred:

• If the bit flip resulted in 001. We know this is not a valid codeword (only 000 and 111 are valid), so we know
an error has occurred.

The hamming distance between 111 and 001 is 2.

The hamming distance between 000 and 001 is 1.

Therefore, we can guess that the original word must have been 000. Similarly, we would be able to detect and
correct errors if the bit flip resulted in 010 or 100.

• If the bit flip resulted in 011 (2-bit error).

Once again we can see it isn’t a valid codeword, so we are able to detect the error.

But if we try correcting it, we would think that the original codeword was 111, since the hamming distance of
(111,011) is less than that of (000,011).

• If the bit flip resulted in 111 (3-bit error)

We wouldn’t be able to detect the error, since 111 is a valid codeword.

Thus we saw - we can detect 1-bit and 2-bit errors. We can only correct 1-bit errors.

Hamming Codes can also be used to detect and correct errors in a different manner.

Let’s say we have data of length m. First we need to calculate the number of redundant bits needed to transmit this.

m + r + 1 ≤ 2r

The smallest value of r satisfying this equation can be used as the number of redundant bits.

Format of the Codeword

• Total number of bits = n = m + r.
• The bits at positions 20, 21, 22, 23... and so on are check bits.
• The bits in the rest of the positions are data bits.
• Bits are numbered from 1.

14

sat
vik

gu
pta

.co
m

Calculating the values of check bits

• Suppose we have m=7. We can see that r=4 will work. Codeword length = 7+4=11.

• Bits at positions 1,2,4,8 are check-bits.

• Bits at positions 3,5,6,7,9,10,11 are data bits.

Suppose our data is 0100110 (7-bit) Final data will look like:

_ _ 0 _ 1 0 0 _ 1 1 0
1 2 3 4 5 6 7 8 9 10 11

Write the position number of data bits as sum of powers of 2.

3 = 1+2

5 = 1+4

6 = 2+4

7 = 1+2+4

9 = 1+8

10 = 2+8

11 = 1+2+8

To calculate value of check-bit 1:

• Check which equations have 1 on the RHS.
• Equations for bits 3,5,7 and 9 have 1 on RHS.
• So, we will do a parity count of bits 3,5,7,9

Bit 3 = 0

Bit 5 = 1

Bit 7 = 0

Bit 9 = 1

• Parity count = 0 (even number of 1’s). So, the value of check bit 1 is 0.

Value of check bit 2:

• Equations for 3,6,7,10,11 have 2 on RHS.

• Parity count:

Bit 3 -> 0

Bit 6 -> 0

Bit 7 -> 0

Bit 10 -> 1

Bit 11 -> 0

Parity Count = 1

• Value of check bit 2 = 1

Similarly we can do for check-bit 4 and 8

Check bit 4:

Equations : 5,6,7 Parity check : 1,0,0 Parity count = 1

Value of check-bit 4=1

Check bit 8

15

sa
tv

ik
gu

pt
a.

co
m

Equations: 9,10,11 Parity Check: 1,1,0 Parity Count = 1

Value of check-bit 8 = 1

Final Codeword:

_ _ 0 _ 1 0 0 _ 1 1 0
1 2 3 4 5 6 7 8 9 10 11

becomes

0 1 0 1 1 0 0 1 1 1 0

Checksum

• Sum all the bits in the data word.
• If the checksum goes beyond n bits, add the extra leftmost bits to the n rightmost bits. (Wrapping)
• Take 1’s complement of the sum so found. This becomes our checksum
• Send the checksum along with the data to the receiver.

At receiver’s end: - Add all the data received (including the checksum) - Perform wrapping if necessary. - The end
result should be 1111....1, i.e, n times 1 - If the end result is anything else, it means the data is wrong.

Example

Let n=4. We are sending 4-bit data.

Let the data be 4 numbers : 7,11,12,6.

• Add all the numbers: 7+11+12+6 = 36
• 36 cannot be represented in 4-bits, so we perform wrapping.

36 in binary 100100

Extra bits are the leftmost 2 bits (10)

Take them and add them to the rightmost 4 bits

0100
10

0110

Take 1's complement

1001
In decimal = 9

9 becomes our checksum which we send to the receiver.

At receiver’s end:

All the data is added.

7+11+12+6+9 = 45

45 cannot be represented in 4-bits, so we will do wrapping

45 in binary is 101101

Take extra digits - leftmost 2 (10)
Add to rightmost 4

16

sat
vik

gu
pta

.co
m

1101
10

1111

We received the sum as 1111, so we know our data is correct.

CRC (Cyclic Redundancy Check)

Data - k-bit Codeword - n-bit Divisor - (n-k+1) bits. Divisor should be mutually agreed between sender and receiver.

• Add (n-k) 0s to the dataword.
• Divide dataword by divisor using modulo-2 division.
• Append the remainder found to the original dataword (without the extra zeroes)

At receiver’s side:

• Perform modulo-2 division of the received code-word and divisor.
• If the remainder is 0, the data is correct. Otherwise it’s incorrect.

Modulo-2 Division

It’s a method of dividing 2 binary numbers.

It follows the rules and logic of normal division, with subtraction step replaced by bitwise XOR.

17

sat
vik

gu
pta

.co
m

Flow Control
To make sure receiver receives all the data.

Stop & Wait ARQ (Automatic Repeat ReQuest)

• Sender sends a frame and waits for ACK (acknowledgement) for the frame from receiver.

• Receiver receives the frame. If the frame is correct, receiver sends ACK.

• If the frame is corrupt, receiver drops the frame and does nothing.

• Sender waits a certain amount of time for ACK from receiver. After this, it times out and resends the frame.

• ACK message may also get lost, then the sender will assume the original frame was corrupted or lost. It will
retransmit, which means the receiver may get duplicate data.

• To avoid this, frames are numbered.

• We only need to differentiate between a frame and its immediate successor. I.e, we need to differentiate between
frame x and x+1. We don’t need to differentiate between frame x and x+2.

x+2 will never be sent unless both x and x+1 have been sent AND acknowledged.

18

sat
vik

gu
pta

.co
m

• Therefore, 1 bit sequence number is enough. If the first frame is 0, the second frame is 1, the third is again 0,
and so on.

Formulas

Total time taken = Transmission time of data + transmission time of ACK + propagation time of data + propagation
time of ACK + Queuing delay + Processing delay.

= Tt(data) + Tt(ACK) + TP (data) + TP (ACK) + DelayQueue + DelayP rocessing

We take queue delay and processing delay to be 0. As ACK is very small, we take transmission time of ACK to be 0.

= Tt(data) + TP (data) + TP (ACK)

Propagation time of ACK and data will be same.

Total time = Tt + 2 ∗ Tp

Where Tt is transmission time of data, and Tp is propagation time.

Efficiency = η = Useful Time/ Total Time

= Tt

Tt + 2 ∗ Tp

= 1
1 + 2(Tp

Tt
)

= 1
1 + 2a

where a = Tp/Tt.

Throughput = η * Bandwidth

19

sat
vik

gu
pta

.co
m

Go Back N

• Sliding Window Protocol
• Receiver window Size = 1
• Sender Window Size = 2m − 1
• Sequence numbers for frames – [0, 1,2m − 1], 0 and 2m − 1 inclusive.
• Window Size = WS/W
• We send up to W frames at a time, and keep them in memory until the receiver ACKs them.
• Receiver only receives one frame at a time.
• Receiver can send a single ACK for many frames. For eg if sender sent 7,8,9 and receiver received all, it can

simply send ACK 10.
• If receiver receives wrong frame (e.g receiver was waiting for frame 3 and frame 4 came), or a corrupted frame,

it stays silent.
• Sender’s timer will timeout. Sender will resend all frames in the window.

For e.g, if WS=3 and sender has sent 1,2,3,4,5,6 and timer for 3 times out (1 and 2 ACKed successfully), sender will
send 3,4,5 again.

Efficiency = η = W S
1+2a

where a = Tp/Tt

For maximum efficiency (100% usage),

• WS = 1+2a

• No. of bits needed for sequence number = ⌈log(1 + 2a)⌉

Selective Repeat (SR)

• Only lost/corrupted frames are resent.

• Sender window size = Receiver Window Size

• Window Size = 2m/2

• Receiver buffers frames that are within its window range. Others are dropped. For e.g, if receiver’s window is
waiting for frames 3,4,5 and sender sends 6, it will be dropped.

• ACK is only sent after frames are received in order. If receiver window is 3,4,5 and we receive 4,5 - 4,5 will be
stored and buffered, but no ACK will be sent.

Instead, receiver will send a negative acknowledgement (NACK) for 3 - NACK 3.

• This tells the sender that receiver hasn’t received 3.

• Sender will resend 3 (only 3).

• When 3 is received, receiver will send ACK 6.

• If we had received 3 in the beginning, we would have immediately sent ACK 4. This would also make the
receiver move its window to 4,5,6.

Example case:

• Sender window = [3,4,5],6,7. Sender sends 3,4,5.
• Receiver receives 3 and sends ACK 4. 4 is lost. Receiver buffers 5 and sends NACK 4. Receiver moves its

window by 1 to [4,5,6],7.
• As soon as the sender receives ACK 4, it knows receiver has received 3.
• It will move its window by 1 to [4,5,6],7. As 5 has already been sent, sender will now also send 6.
• Sender will receive NACK 4 and resend 4.
• Receiver will receive 6 from sender, and buffer it. Receiver still hasn’t received 4. It will send NACK 4.
• Receiver will receive 4 from sender. It has 5,6 so it will send ACK 7.
• Sender will receive the second NACK and again send 4
• Receiver will receive the 4 (that the sender sent earlier), and accept it. 4,5,6 have all been received. Receiver

will send ACK 7, and move its window to [7,8,9]

20

sat
vik

gu
pta

.co
m

• Receiver will receive the second 4 sent by the sender. It will be ignored since it’s out of the window.
• Sender will receive ACK 7 and move its window to [7,8,9].
• Transmission will continue as normal from here.

Figure 13: Selective Repeat Example

Data Encoding Techniques

NRZ-Unipolar

1 - +ve

0 - 0

NRZ-Polar

1 - +ve

0 - -ve

NRZ-I

Differential Encoding.

21

sat
vik

gu
pta

.co
m

1 - Signal transition at start (high-to-low or low-to-high)

0 - No signal transition at start

Manchester

Always has a mid-bit transition:

1 - Low to High

0 - High to Low

The start of the bit may also have a transition, if needed according to the bit’s value.

For eg, if the bit is 1 (which means we need a low to high transition in the middle), and the interval starts with a
high value, we will transition to low at the start.

(Eg - Encoding 11)

Differential Manchester

Mid-bit transition is only for clocking purposes.

1 - Absence of transition at the start.

0 - Presence of transition at the start.

Bipolar Encoding

1 - Alternating +1/2, -1/2 voltages

0 - 0 voltages

Figure 14: Data Encoding Techniques

22

sat
vik

gu
pta

.co
m

Media Access Sublayer
The data link layer is divided into two sublayers.

1. Media Access Control (MAC) - Defines the access method for each LAN.
2. Logical Link Control (LLC) - Flow control, Error control, etc.

Framing is handled by both.

Media Access Control and Multiple Access Protocols
Handle how multiple nodes can communicate on a single link.

Random Access/ Contention Methods
• All nodes are considered equal.
• No scheduled transmission.
• Transmission occurs randomly.
• Nodes compete for access.

Pure Aloha

• Each node sends a frame when it has a frame to send.

• Obviously, we will have collisions in case 2 nodes decide to send a frame together.

• Aloha expects the receiver of the frame to send ACK for the frame.

• Vulnerable time for Aloha is 2 ∗ Tt. This is the time frame in which collisions can happen.

For eg, A sent a frame at 12:05

Let transmission time = 5 minutes.

B wants to send a frame. But it cannot send a frame until 12:10, because till 12:10 A will be transmitting its
frame. A collision will occur if B sends before 12:10.

Similarly, if C had earlier sent a frame anytime after 12:00, A’s frame will collide with it.

Therefore, the vulnerable time is 12:00 - 12:10, which is 10 minutes = twice of transmission time.

• In case a collision occurs, the node waits a random amount of time before retransmitting. How much time to
wait is explained in the flowchart below.

• Maximum number of attempts are fixed.This value is called Kmax For eg, if max attempts = 15, if a node has
transmitted the same frame 15 times and always gotten collision, it will abort and try again some time later.

• Kmax is generally set to be 15.

Efficiency of Pure Aloha
S = G.e−2G

where G is the the average number of frames created by the entire system (all nodes combined), during the transition
time of a single frame.

For eg, if Tt is 1ms, G is number of frames produced per millisecond.

Smax = 0.184 at G = 1/2.

23

sat
vik

gu
pta

.co
m

Figure 15: Flowchart for Aloha

The procedure of choosing a random number between 0 and 2K − 1, incrementing the value of K, and waiting an
amount of time based on R, is called the backoff procedure.

Slotted Aloha

• Same as Aloha, but time is divided into slots.
• Time is discrete and globally synced (all nodes have same value of time)
• Frames can be sent only at the beginning of a time slot.
• Vulnerable Time = Tt

Efficiency of Slotted Aloha
S = G.e−G

Smax = 0.368 at G = 1.

CSMA (Carrier Sense Multiple Access)

• Each node will sense the medium before sending.
• If the medium is idle, send the data. Otherwise wait.
• Collisions may still occur due to propagation delay.

For e.g, if A sent a frame at 12:01, and propagation time from A to D is 2 minutes. If D checks the medium at
12:02, it will find it idle and send the frame. A’s frame and D’s frame will then collide.

24

sat
vik

gu
pta

.co
m

• Vulnerable time = Tp (Max propagation time).

Persistence Methods for CSMA

Persistence methods decide when and how to send data after sensing medium.

1-Persistent

• Continuously Sense the medium.
• As soon as the medium is idle, send the data immediately.

Non-Persistent

1. If medium is idle, send the data immediately.
2. If medium busy, wait a random amount of time, then sense the medium again and repeat from step 1.

• Less efficient, as the channel may remain idle in the random waiting time.
• Less chance of collision.

P-Persistent

Uses a value p that is fixed by the network administrator for each node. Different nodes have different values of p 1.
Continuously check medium till idle. 2. If idle: - Generate random number r - If r < p, then transmit the data. -
Else: - Wait for a time slot, and then check the line. - If line is idle, go to step 2. - If the line is busy, act as if a
collision occurred, and follow the backoff procedure.

CSMA with Collision Detection (CSMA/CD)

• Continue sensing medium for time= 2 ∗ Tp after transmission.
• This will help us sense potential collisions.
• If a collision is detected, the node that detected the collision will send a jamming signal to the access medium.

After that, backoff procedure will be applied.
• Condition to detect collision:

Tt = 2 ∗ Tp

The transmission time for the frame should be long enough that we can detect collisions while we are
transmitting it.

• Efficiency of CSMA/CD is
η = 1

1 + 6.44a

where a = Tp/Tt.

Network Layer
• Moves packet from source to destination
• Uses routers, bridges, switches.
• Deals with IP addresses.

Performs the following functions:

• Routing
• Fragmentation
• Congestion Control

IP addresses have two parts - network ID, and host ID. Network ID represents which network the IP address is part
of, i.e, which organization controls it. Host ID represents which computer (or mobile,printer,etc.) in that network
the IP address belongs to.

For e.g, Google has many servers. They will all have the same Network ID, but different Host IDs.

25

sat
vik

gu
pta

.co
m

Classful Addressing
IPv4 addresses were divided into various classes for easier addressing purposes.

An IPv4 address is a 32-bit address. For ease of representation, it is divided into 4 octets. Each octet contains 8-bits.

(8)(8)(8)(8)

It allows us to write the IP address in the following format - 192.168.10.1 Here, 192 is the first octet, 168 is the
second, and so on. All are represented in decimal. This is called Dotted Decimal Representation.

Class A

In this, the first bit of the first octet is always fixed as 0.

0 _ _ _ _ _ _ _ . (octet 2) . (octet 3) . (octet 4)

The range of the first octet becomes 00000000 to 01111111, i.e. 0 to 127.

The 1st octet represents the Network ID (7-bits).

The 2nd, 3rd and 4th octet represent the Host ID (24-bits).

Number of IP Addresses in Class A = 231, which is half of all IPv4 Addresses in the world.

Total number of Networks = 27 − 2 = 126. Range is [1,126].

The network IDs 00000000 and 01111111 are reserved and unused. They aren’t given to any organization.

Total number of hosts in each Network = 224 − 2

Host with values 0.0.0 and 255.255.255 (first and last hosts) are also reserved and unused.

The host with value 0.0.0 is used to represent the entire network. So, for a network with networkID = 28, 28.0.0.0 is
used to represent the entire network (and not any particular host in the network).

Host with value 255.255.255 is used to represent Direct Broadcast Address. If anyone wants to send a particular
message to all the hosts in a network, they will use this. For a network with networkID =28, 28.255.255.255
represents its direct broadcast address.

Default Mask for class A is 255.0.0.0

For any IP address, performing bitwise AND of the IP Address, and the Default Mask for its class
will give us the network that IP address belongs to.

For eg, let the IP address be 28.12.34.1

First bit of first octet is 0, so we know it’s a class A Address.

Bitwise AND with 255.0.0.0

00011100.00001100.00100010.00000001 (28.12.34.1)
11111111.00000000.00000000.00000000

00011100.00000000.00000000.00000000

= 28.0.0.0

28.0.0.0 represents the network that the IP address 28.12.34.1 belongs to.

Class B

First octet has first 2 bits fixed as 10

1 0 _ _ _ _ _ _ . (octet 2) . (octet 3) . (octet 4)

26

sat
vik

gu
pta

.co
m

First 2 octets represent the Network ID.

Last 2 octets represent the Host ID.

Range is (128-191)

Number of IP Addresses = 230, 25% of all IPv4 addresses in the world.

Number of networks = 214

Number of hosts in each network = 216 − 2 = 65534

First and last hosts are excluded here, as they were in class A.

Class A excluded first and last networks also. Class B excludes first and last hosts only. All networks
in Class B are available for use.

Default Mask - 255.255.0.0.

Class C

First octet has first 3 bits fixed as 110

1 1 0 _ _ _ _ _ . (octet 2) . (octet 3) . (octet 4)

First 3 octets represent the Network ID.

Last octet represent the Host ID.

Range is (192-223)

Number of IP Addresses = 229, 12.5% of all IPv4 addresses in the world.

Number of networks = 221

Number of hosts in each network = 28 − 2 = 254

First and last hosts are excluded here, as they were in class A.

Class A excluded first and last networks also. Class C excludes first and last hosts only. All networks
in Class C are available for use.

Default Mask - 255.255.255.0.

Class D

First Octet has first 4 bits reserved as 1110

1 1 1 0 _ _ _ _ . (octet 2) . (octet 3) . (octet 4)

Range is (224-239)

Number of IP Addresses = 228

In class D, all IP addresses are reserved. There is no network ID and no host ID.

These IP addresses are only meant to be used for multicasting, group email, broadcasting, etc.

Class E

First Octet has first 4 bits reserved as 1111

1 1 1 1 _ _ _ _ . (octet 2) . (octet 3) . (octet 4)

27

sat
vik

gu
pta

.co
m

Range is (240-255)

Number of IP Addresses = 228

All IP addresses are reserved for military purposes.

Classless Addressing
This divides 32-bit IP addresses into BlockID and HostID.

BlockID is similar to NetworkID.

Format - x.y.z.w/n

n represents the number of bits used to represent the blockID.

It also represents the number of 1-bits that the mask for this IP address should have.

For e.g - 128.225.1.1/10

This means the first 10 bits represent the block ID, and rest 22 bits specify host ID.

The mask for this network would be - 11111111.11000000.00000000.00000000, (10 times 1, then all 0)

To find the network, we do bitwise AND of IP address and mask

10000000.11100001.00000001.00000001
11111111.11000000.00000000.00000000

10000000.11000000.00000000.00000000

= 128.192.0.0

The network that IP address belongs to is 128.192.0.0/10

Rules for Classless Addressing

• Addresses should be contiguous

• Number of addresses must be in power of 2.

• 1st address of every block must be evenly divisible by block size (number of hosts)

Block Size = number of hosts = 232−10 = 222 First address of block is same as network’s IP address =
128.192.0.0/10 = 10000000.11000000.00000000.00000000 = 10000000110000000000000000000000

We don’t need to divide. We can just check that the last 22 (22 is number of bits used to specify host) bits are
0.

i.e, the 22 least significant bits (LSBs) should be 0, which is true in our case.

Subnetting
Subnetting is the process of dividing a large network into smaller subnets. This helps in organization, security, fixing
bugs, etc.

An organization may divide it’s network into separate subnets for finance department, legal department, etc.

We do this by dividing the hosts.

NetworkID REMAINS UNCHANGED IN SUBNETTING, ALWAYS.

28

sat
vik

gu
pta

.co
m

Subnetting in Classful Addressing

Suppose we have a network with the IP 200.10.20.0. This is a Class C IP address.

It has a total of 254 hosts. We want to divide it into 2 equal subnets.

• Network ID is 200.10.20. This will remain unchanged.
• The last octet is used to specify the host. Let’s say we want 2 subnets - S1 and S2.
• We will subnet by fixing the first bit in the last octet as either 1 or 0.

S1

For the last octet, we will prefix the first bit for S1 as 1.

S1 will have IP addresses of the form 200.10.20.1 _ _ _ _ _ _ _.

Range => 200.10.20.128 - 200.10.20.255

Usable IP addresses = 27 − 2 = 126

Network IP address for S1 is 200.10.20.128.

Broadcast IP address is 200.10.20.255

S2

For the last octet, we will prefix the first bit for S2 as 0.

S2 will have IP addresses of the form 200.10.20.0 _ _ _ _ _ _ _.

Range => 200.10.20.0 - 200.10.20.127

Usable IP addresses = 27 − 2 = 126

Network IP address for S1 is 200.10.20.0.

Broadcast IP address is 200.10.20.127

Thus, if the network receives a packet meant for 200.10.20.50, it will be sent to S2.

A packet meant for 200.10.20.165 will be sent to S1.

Subnet Mask

Since we are indirectly using 1 extra bit to specify Network ID now, our subnet mask will also have 1 extra bit
added to it.

Class C’s Subnet mask is 255.255.255.0

Now, it will be 255.255.255.1 _ _ _ _ _ _ _.

We added 1 in the place where we prefixed an extra bit.

Subnet mask for our network is now 255.255.255.128

Our total number of usable IP addresses has become 126+126= 252. Earlier, it was 254.

Due to subnetting, we have lost the use of 2 IP addresses.

Number of usable IP addresses = Number Of Original Usable IP Addresses - n ∗ 2

where n is the number of subnets.

29

sat
vik

gu
pta

.co
m

Subnetting in Classless Addressing

The procedure is mostly the same as for subnetting in classful addressing. The only extra thing that needs to be
done is to change the value of n.

For.eg,

128.192.0.0/10 - let this be our network.

First 10 bits specify block. Last 22 bits specify host.

10000000.11000000.00000000.00000000. The bold part represents block ID.

To subnet into two equal subnets, we fix the first host-bit.

Subnet 1 will have IP addresses of the form 10000000.1110_ _ _ _ ._ _ _ _ _ _ _ _ ._ _ _ _ _ _ _ _. (We
prefixed 0)

Subnet 2 will have IP addresses of the form 10000000.1111_ _ _ _ ._ _ _ _ _ _ _ _ ._ _ _ _ _ _ _ _. (We
prefixed 1)

To find out IP Addresses for Subnet1 and Subnet2, we will have to increase the value of n by 1, since now we are
using an extra bit to find out block ID.

Subnet1 IP Address = 128.192.0.0/11

Subnet2 IP Address = 128.224.0.0/11

Accordingly, mask will be changed.

Variable Length Subnet Masking (VLSM)

In case we want subnets of different sizes, we use this technique. It works for both classless and classful addressing
in similar ways. We’ll explain using classful here.

Suppose we have a network with IP 200.10.20.0.

We want to divide it into 3 networks - S1, S2, S3. S1 should have 50% of all hosts. S2 and S3 should have 25% each.

We will subnet in the following way:

S1

IP Addresses of the form - 200.10.20.0 _ _ _ _ _ _ _ (1 bit prefixed)

Range - 200.10.20.0 - 200.10.20.127

Usable IP Addresses - 126

S2

IP Addresses of the form - 200.10.20.1 0 _ _ _ _ _ _ (2 bits prefixed)

Range - 200.10.20.128 - 200.10.20.191

Usable IP Addresses - 62

S3

IP Addresses of the form - 200.10.20.1 1 _ _ _ _ _ _ (2 bits prefixed)

Range - 200.10.20.192 - 200.10.20.255

Usable IP Addresses - 62

For S1, we prefixed only 1 bit. For S2 and S3 we prefixed two bits. We can see that the S1 has roughly double the
number of IP addresses that S2 and S3 each have.

We divided the network into two equal halves - S1, and let’s call the other part S′.

30

sat
vik

gu
pta

.co
m

Then, we further divided S′ into S2 and S3.

Figure 16: VLSM

Header Formats for IP Protocols
Whenever a packet is sent using IP (IPv4 or IPv6), it includes data (payload), as well as a header. The header
doesn’t contain the actual data, but it contains metadata such as destination, priority, source, etc.

IPv4 Header Format

• IPv4 is a connectionless datagram service.
• Header size is between 20-60 bytes.
• The total datagram size is at max 64 KB, or 65535 bytes.
• The payload size is maximum 65515 bytes. This happens when the header size is 20 bytes. In case the header

size is larger than 20, the max payload size will be decreased accordingly.

31

sat
vik

gu
pta

.co
m

Figure 17: IPv4 Header Format

VER

• Stands for version. It is a 4-bit value. It contains the value of version, i.e, which IP version is being used.

• Almost all transmissions either use IPv4 or IPv6.

• Version for IPv4 is 4 = 0100

• Version for IPv6 is 6 = 0110

HLEN

• Contains the header-length.
• 4-bit value.
• Uses a factor of 4.

Header size = HLEN*4.

As the minimum header size for IPv4 is 20 bytes, HLEN can never be 0,1,2,3 or 4.

Type of Service

• Also known as DSCP (Differentiated Service Code Point)
• 8-bit value
• Contains different values specifying the type of service we wish to use.

The 8 bits are:

[P][P][P][D][T][R][C][0]

The first 3 bits (P) are used to set the precedence, or priority of the packet.

D - Delay.

32

sat
vik

gu
pta

.co
m

0 means normal delay. 1 tells router this packet needs minimal delay.

T- Throughput

0 - normal

1 - maximize

R - Reliability

0 - normal

1 - maximize

C - Cost

0 - normal

1 - minimize

The last value is reserved as 0. It’s fixed for future use. Only one bit out of D,T,R and C can be 1 in a packet. More
than 1 cannot be 1. For eg - 0011 is not valid.

Total Length

Contains total length of the packet. 16-bit value.

TTL (Time to Live)

• 8-bit value
• Source sets it to max value (255), or it can also be set as (max number of routers between source and

destination)*2.
• At each node it encounters (router/switch/etc.), the value is reduced by 1.
• When it becomes 0, the packet is dropped.
• This helps in case a packet is getting stuck in loops in the network, causing congestion.

Protocol

• 8-bit
• Tells which protocol is being used, TCP,UDP, etc.

Header Checksum

• Contains the checksum value for the header.
• 16-bit
• Only IP header fields are used while calculating checksum, actual data isn’t used. This is because higher level

protocols such as TCP and UDP use their own checksums for the data, so it isn’t required for IP to do it as
well.

• Since fields like TTL can change, header checksum is recalculated at each router.

Source IP

• Contains IP address of the source
• 32-bit

Destination IP

• Contains IP address of destination.
• 32-bit

33

sat
vik

gu
pta

.co
m

Fragmentation is done for packets that are larger in size than the permitted size.

The packet is broken down into many smaller packets, then sent over the network. It is reassembled at the source.

The IPv4 header contains values to identify the fragments.

Identification Bits

This is a 16-bit unique packet ID. It identifies a group of fragments that belong to a single IP datagram.

Flag

3-bit value.

[R][D][M]

The first bit is reserved as 0.

The second bit (D) stands for Do not Fragment. If this bit is 1, no node will try to fragment this bit. But, if
some node doesn’t allow a packet of a large size, and we set D=1, the node may drop that packet altogether.

The third bit (M) stands for More Fragments

If M=0, either this packet is the last packet in its datagram, ot it’s the only fragment.

If M=1, it means more fragments are coming after this packet.

Fragment Offset

This represents the number of data bytes ahead of this particular fragment, i.e, the position of this fragment in the
original unfragmented datagram.

It uses a factor of 8.

I.e, number of bytes ahead = Fragment Offset * 8.

For eg, if a datagram is broken into 4 fragments of 80 bytes each (excluding the header length).

Fragment offset value for

1st fragment - 0 (No bytes ahead of it)

2nd fragment - 10 (80 bytes of data ahead of it. 80/8=10)

3rd fragment - 20

4th fragment - 30

Options

These contain optional headers and metadata. For example, they may be:

Record Route

Tells the nodes to record the route this packet has taken in the header. Can record upto 9 router addresses.

Source routing

The source defines the route that the packet will take.

It is of two types.

1. Strict - The source defines the exact specific nodes the packet will travel through to get to its destination.
Each router mentioned in the list must be visited, and routers that are absent in the list must not be visited.

2. Loose - The source defines only loose requirements. Routers in the list must be visited, but the packet can
also visit other routers.

Users cannot set source routing, only routers are allowed to do this.

34

sat
vik

gu
pta

.co
m

Padding

This is added in case the header size is not in multiple of 4.

We need to store the header length in HLEN, which uses a factor of 4.

So, if the header length is 21, we will add 3 bytes of padding to make it 24. Then HLEN will store 24/4 = 6.

IPv6 Header

• IPv6 uses 128-bit IP addresses instead of 32-bit.
• Only source can fragment packets. Intermediate nodes cannot.
• Header length is fixed at 40 bytes.

Figure 18: IPv6 Header. Length of fields written in brackets.

VER is the same as in IPv4.

Traffic Type is the same as Type of Service in IPv4.

Flow Label

20-bit value.

For continuous data that travels in a flow, such as video streaming, or live updates, we use flow labels. Even large
files may be sent using flows.

Intermediate routers use source IP, destination IP and flow label to distinguish one flow from another. A source and
a destination may have multiple flows occurring between them.

For e.g, if you’re downloading two files together from Google Drive, they may be sent through 2 different flows.

So, we give them different flow labels to help identify which flow is which.

Payload Length

Length of the payload

Next Header

IPv6 uses extension headers instead of options. Metadata for routing, authentication, fragmentation, etc. are set in
special extension headers.

This field is a 8-bit field that contains the type of the extension header (if present), that comes immediately after the
IPv6 header. Each extension header contains its own “Next Header” field. The extension headers are thus chained
together like this.

35

sat
vik

gu
pta

.co
mIn some cases, this field is also used to indicate protocols in upper layers, such as TCP or UDP.

Hop Limit

Same as TTL in IPv4 Header

Source IP and Destination IP are 128-bit IPv6 addresses for the source and destination respectively.

Extension Headers

Extension headers may be used for many purposes. Some common extension headers used in IPv6 are:

• Routing headers, used if source wants to determine the route the packet should take.
• Authentication headers, used for security purposes.
• Fragmentation Header, used for fragments.
• Destination options - For data that we want only the destination to open, no intermediate routers
• Hop by Hop options, used to specify delivery parameters at each hop on the path to the destination.

Congestion Control
Congestion Control deals with preventing the entire network from having too much data transmitting at once. Even
if every single node is transmitting within their individual limits, the combined flow of data may congest the network.

Two main algorithms for Congestion Control are used - Leaky Bucket and Token Bucket.

Leaky Bucket

This algorithm simulates a leaky bucket, which is usually implemented as a queue. The bucket has an incoming
stream of water (data) that can have different speeds. There is a hole in the bottom of the bucket that is our output
stream, which “leaks” water at a constant rate, even if the incoming stream is faster than it.

This ensures that even if the host is sending a lot of data together, the network is not congested with it. It is usually
implemented as a FIFO queue with a fixed output rate.

If the bucket/queue is full, and more data arrives from the host, it will “overflow”,i.e, be lost.

A drawback is that this fixes a rigid pattern at the output, no matter what the pattern of the input is. This is fixed
by the token bucket approach.

Token Bucket

In this, tokens are added to the bucket at a constant rate. When a packet arrives, it takes the corresponding amount
of tokens in the bucket, and is transmitted. For example, to transmit 1MB data, we need 1MB of tokens.

If the bucket doesn’t have 1MB of tokens, the packet must wait, or be discarded. If the bucket has >= 1MB of
tokens, the packet will take as many as it needs (1MB), and be transmitted.

If the bucket is full, no more tokens are added (i.e, incoming tokens are discarded.)

36

sat
vik

gu
pta

.co
m

Routing Protocols
Routing Protocols are used to decide the route a particular packet will take to its destination.

Distance Vector Routing (DVR)

• Each node maintains table of minimum distance to every other node in the network.
• Table also contains next entry for each node. I.e, if we have node A’s table, that contains data about node

B,C,D. . . etc. If next value for B is C, that means to get to B from A, we go through node C.
• Information is shared only between neighbors (directly connected). Each node will share its routing table to

its immediate neighbours.
• Update may be periodic or triggered.
• Count to Infinity problem may occur in this.

– Three nodes - X—A—B. X-A = 1, A-B=1, X-A=2
– If link between X and A breaks, then the following problem will occur. A will set its distance to X as

infinity.
– B will send its routing table to A. A will think B has found another path to X with cost 2. It will update

its routing table so that X-A=2+1=3
– A will send new table to B. B will think the cost to get to X (through A) has increased to 3. It will

update its table so that X-B=4.
– Similarly, B will again send the new table to A. A will update the X-A value to 5. This process will

continue forever.
• Split Horizon technique is used to solve count to infinity.

– If B knows optimum route to X is through A, it will not send X-B value to A.
– Taking information from A, and sending it back to A, is what causes the loop.’
– A will update the X-A value to infinity. B will send the routing table to A (but without the X-B) value.

A will not update anything and send the new routing table to B. B will change the X-B value to infinity.
• Bellman Ford is used to calculate distance tables.

Link State Routing

• Router sends information about its neighbors to the entire network through flooding.
• Uses Dijsktra to calculate routing tables.
• Hello messages are sent to discover neighbor nodes.

Routing in Subnets

When a data packet arrives at a network that has subnets:

• The router will perform bitwise AND of the destination IP in the packet, with all the subnet masks in the
network.

• The result of the AND operation will be checked in the routing table.
• In case we find a single match in the table, we will send that packet to the corresponding interface.
• In case we find more than one match, we will send it to the interface with the longest subnet mask
• In case we don’t find any match, we send it to the default interface.
• In fixed length subnetting all subnets have the same mask, so we perform bitwise AND only once.

Network Protocols
ARP (Address Resolution Protocol)

• Each device (computer, phone, printer,etc.) on a network has an IP Address as well as a MAC Address.
• The IP Address identifies the device on the network. The MAC Address is the physical address of the device.

ARP maps a device’s IP Addresses (Logical Address) to its MAC Address.

RARP (Reverse Address Resolution Protocol) maps MAC Address

• If A wants to send a packet to B that is on the same network, it needs the link-layer address (physical or MAC
address) in order to send it over the link.

37

sat
vik

gu
pta

.co
m

• A will only know B’s IP address, not MAC address. It sends an ARP request.
• ARP request is a broadcast that is sent to all devices on the network. The request contains

– A’s IP address
– A’s MAC address
– B’s IP address

• The ARP request will be ignored by all nodes except B. B will recognize it’s IP address in the request and it
will send an ARP response packet back to A. The response packet will contain B’s IP and MAC addresses.
The response packet will be sent only to A, as a unicast.

NAT (Network Address Translation)

• Translates Public IP to Private IP, and vice-versa.
• Due to lack of IPv4 addresses, we separated an organization’s public IP from its private IP.

For e.g, an organization has 100 different computers, that all need to connect to the Internet. Instead of giving them
100 public IPs, we give the organization a single public IP.

Each of the 100 hosts is then given a private IP.

For example:

Organization’s Public IP - 192.20.20.0

Private IPs in the Organization - 10.0.0.1, 10.0.0.2, 10.0.03, etc.

We attach a NAT (Network Address Translator) to the organization’s network. Generally this is part of the router.

NAT translators will translate a private IP to a public IP, so that the computer can access the Internet, or other
networks. It can send data to the Internet, and receive data from the Internet.

When sending data, the NAT will translate private IP to public IP. When receiving data, it will translate public to
private IP. Different port numbers may be used to identify different computers.

Transport Layer
Responsibilities

• Port to Port Delivery/ Process to Process Delivery. It must deliver the data from the sender application
(for e.g, a browser) to the receiver application (the server of the website the user opened).

• Segmentation - Break down the data into smaller parts that can be sent over the network, and reassemble it
at the receiver side.

• Multiplexing and Demultiplexing - A single device generally only has a single connection to the Internet
(or any other network). If multiple applications are using that connection, multiplexing and demultiplexing of
data is done.

• Connection Management

• Reliability - All the data must be delivered to the receiver correctly. No lost/corrupted data should be
delivered. Lost/corrupted data must be detected and resent. UDP doesn’t provide reliability.

• Order - Data must be sent in order. If the data was broken down into 4 parts, they must arrive in the correct
order.

It is possible that the network layer sends them out of order - for e.g, 2,3,1,4. The Transport layer must correct
the order before delivering the complete data to the Application Layer. UDP doesn’t provide in-order
delivery.

• Error Control - Checksums are used for this. Receiver verifies the checksum that the sender sent.

• Congestion Control

• Flow Control

38

sat
vik

gu
pta

.co
m

Socket Address and Port Numbers
Socket Addresses are made up of an IP address, and a 16-bit port number. They are used to uniquely identify a
TCP/UDP/ any other transport layer protocol connection.

A particular computer will have an IP address, but many applications running on it may need to access the Internet.
When data packets arrive, the OS must be able to figure out which data packet belongs to which application.

A unique port number is assigned to each application. Only one application may use a particular port at a given
time. For e.g, two applications cannot listen on port 3000 at the same time.

Port Number Types

There are three categories of port numbers:

1. Well Known/System Ports - These are the ports for most commonly used networking tasks. For example,
a web-server will always listen for HTTP requests on Port 80, and HTTPS on port 443. An email server will
always listen on port 25 for SMTP (Simple Mail Transfer Protocol) requests. Assigning fixed numbers makes it
easier to handle common tasks. Typing www.google.com in a browser is the same as typing www.google.com:443,
because the browser knows that the standard port for HTTPS is 443.

Range for these is 0-1023.

2. Registered/User Ports - Organizations and Applications can have specific ports reserved for their use.
They can register these with IANA (Internet Assigned Numbers Authority). For e.g, Xbox Live has 3074 port
number reserved for it.

Range for these is 1025-49151.

3. Dynamic/Ephemeral Ports - These are the rest of the ports left in the range. When an application needs
to use a transport layer protocol, it requires a port number. The OS will generally assign it any random port
number that is currently not in use.

Range for these is 49152-65535

Registered, and even well-known ports can be used for other tasks. For example, you can still run an email server on
Port 80. You can also use Port 3074 for something other than Xbox Live. These are simply guidelines and standards
to prevent confusion and clashes.

IP Address is used to differentiate one machine from another. Port Numbers are used to differentiate
different applications on the same machine.

TCP (Transmission Control Protocol)
TCP (Transmission Control Protocol) is a popular transport layer protocol. Most applications, such as HTTP,
HTTPS, Email (SMTP/IMAP), etc. use TCP.

Characteristics

Characteristics of TCP are:

1. Byte Streaming - Application layer continuously sends data to the transport layer. TCP breaks it down
into bytes, and packages several bytes into a single segment. Multiple segments are created and sent to the
receiver.

2. Connection-Oriented - TCP establishes a connection with the receiver first, using a 3-way handshake. All
future communication between sender and receiver occurs over this connection.

3. Full Duplex - Two-way communication can happen, at the same time.
4. Piggybacking - Sender sends data to receiver, and receiver must send back acknowledgement for that data.

In most cases these days, communication occurs both ways, i.e, if A sends data to B, B also sends data to A.
Thus, instead of B sending acknowledgements separately to A, B will attach the acknowledgement along with
the data it has to send A.

39

sat
vik

gu
pta

.co
m

1. Needs buffers - Sending and receiving processes may not operate at same speed, therefore TCP needs
sender and receiver buffers for storage.

TCP Header

Figure 19: TCP Header

TCP Header is attached to each TCP Segment. It contains the following fields. It’s size can vary from 20-60 bytes.

Source Port

Port Number for the source (sender) application.

Destination Port

Port Number for the destination (receiver) application.

Sequence Number

Each segment is given a sequence number based on the data sent before it. When a TCP connection is established,
a random sequence number is generated.

For e.g, let the initial sequence number be 500. (For now, ignore the increase in sequence number during the 3-way
handshake)

Let’s say A sends B 200 bytes of data, in 4 segments of size 50 bytes. The sequence number will be 500 for the first
segment, 550 for the second segment, 600 for the third, and so on.

Acknowledgment Number

This is used to let the sender know that the packet that it sent has been received. It is set as the value of the next
sequence number that the receiver is expecting.

40

sat
vik

gu
pta

.co
m

For e.g, if A sends B data with sequence number 500, that has 50 bytes in it. Thus, B receives bytes number
500,501,502. . . .549. Now, it expects byte number 550. Thus, it will set Acknowledgement Number as 550.

Header Length/Data Offset

Length of the TCP Header. Uses a factor of 4, same as IPv4 Header’s HLEN field

Reserved

Next 6 bits are reserved for future use. 2 of them have already been defined as CWR and ECE.

Code-Bits/Flag Bits

There are 6 Flag Bits, each with their own purpose.

URG (Urgent)

If this bit is set to 1, it means that this segment contains urgent data. Location of the urgent data is set in the
urgent pointer.

ACK

Indicates that this message contains an acknowledgement, i.e, the value of the acknowledgement number is significant.

PSH (Push)

When receiver is receiving data, it will generally buffer some amount of data before sending it to the application
layer. PSH field indicates that the receiver should stop buffering and push whatever data it has to the application
layer.

RST (Reset)

Used to Reset the TCP connection.

SYN (Sync)

Used to sync sequence numbers. Only the first packet sent from each end should have this value set.

FIN (Finish)

Used to terminate the connection.

Window Size

Specifies the size of the receiver’s window, i.e, the current amount of data it is willing to receive. A will tell its
window size to B, and B will tell its window size to A.

Checksum

Used for error-checking.

Urgent Field

If the segment contains urgent data, this field tells where the urgent data is located. It contains the sequence number
of the last urgent byte. For eg, if A sent bytes number 500-549, and bytes 500-520 are urgent, the urgent field will
contain the value 520.

Options

Contains optional fields, such as timestamps, window scale, and maximum segment size (MSS). MSS is the
maximum size of one single segment that the receiver is willing to accept. It is separate from window size, which
may be larger, as a window can contain multiple segments.

41

sat
vik

gu
pta

.co
m

Padding

In case the total header size is not a multiple of 4, we add empty zeroes to make it so, so that we can store it in the
header length field.

TCP Connection Establishment

A 3-way handshake is used to establish a TCP connection. This process occurs before any actual data is sent. The 3
steps are:

1. SYN - Sender will send the receiver a connection request. It will send a randomly generated sequence
number,its port number, its window size, etc. It will set the SYN flag as 1, indicating that it wants to set up a
connection.

Let’s say A sent a connection request to B, with the sequence number 3000 (random), and window size as 1200
bytes. This will let B know that A only can only receive 1200 bytes of data (until it empties its buffer again)

2. SYN-ACK - The receiver will respond to the sender’s request. It will send a response, with SYN field as 1.
It will also send an acknowledgement (in the same response), and tell its own window size to the sender.

B will reply to A. It will generate a random sequence number, say 5000. It will set the ACK and SYN flag.
It will also set the acknowledgement number to 3001 (since A’s sequence number was 3000.) It sends A its
window size, say 800 bytes.

3. ACK - Sender will acknowledge the response. After this, sender and receiver will begin exchanging actual
data. SYN flag is 0 in this.

A will send B a response with sequence number 3001, and Acknowledgment number 5001. ACK will be set as
1. SYN flag will be 0.

Sequence numbers are not consumed if PURE ACK is sent. If a segment contains only ACK, and not
data, and it uses sequence number x, then the next segment can also use sequence number x.

After this, A and B can start exchanging data. Both A and B will reserve some resources (memory, RAM, etc.) for
this A-B TCP connection.

A will not send more than 800 bytes to B, and B will not send more than 1200 bytes to A. A will send sequence
numbers 3002,3003,3004. . . ., and B will send sequence numbers 5001,5002,5003. . . and so on.

TCP Connection Termination

4-way handshake.

1. FIN from Client- Client wants to close the connection. Client will send server a segment with FIN bit as 1.
(Server may also choose to close the connection)

Client will enter FIN_WAIT_1 state. In this state, the client waits for an ACK from the server for this
FIN segment. This is also called Active Close state.

2. ACK From Server- Server will receive the FIN segment, and send an ACK to the client. Server now enters a
Close Wait (Passive Close) state. Server will release any buffer resources, because client has said it doesn’t
want to send any more data to server. (Server may still have data to send to the client).

When the client receives the ACK from server, it enters FIN_WAIT_2 state. In this state, the client is
waiting for the server to send a segment with FIN bit set as 1 (i.e, client is waiting for server to also close the
connection.)

3. FIN from Server - Server can send any pending data, and then it will send a segment with FIN bit as 1.
Server now enters LAST_ACK state. In this state, the server only expects to receive one last ACK from the
client (for the FIN segment server just sent). After receiving the ACK, Server will release all resources for this
connection, and the connection will be closed.

4. ACK from Client - Client will receive the server’s FIN segment, and send an ACK for it. Client will enter
TIME_WAIT state. In this, the client waits in case the final ACK was lost. If the final ACK was lost, the
server will timeout and resend the FIN message. If the client receives any FIN message in the TIME_WAIT

42

sat
vik

gu
pta

.co
m

state, it will resend the ACK. If it doesn’t, client assumes the last ACK was successfully delivered, and it will
close the connection.

The amount of time to be waited varies, but it’s generally 30s or 1 min.

Figure 20: TCP State Diagram

Dashed lines are for server, solid for client.

TCP Congestion Control

Congestion Window is used for congestion control. Size of congestion window changes throughout the TCP connection.
We first increase it, to send more data in less time. In case congestion occurs while increasing, we again decrease it.

Concept of MSS (Maximum Segment Size) is used.

Congestion Control in TCP has 3 phases:

1. Slow Start Phase (Exponential Growth) - In this, the congestion window is increased exponentially.
Initially, the window size is 1 MSS. Then it becomes 2 MSS, then 4, then 8, then 16, and so on, until the slow
start threshold. Slow Start Threshold is determined as

(ReceiverWindowSize/MSS)/2

This gives max number of segments in slow start phase (not their size.)

2. Congestion Avoidance Phase (Linear Growth) - Congestion Window grows linearly. If it at x MSS , it
becomes x + 1, then x + 2, and so on.

43

sat
vik

gu
pta

.co
m

This continues until congestion window size becomes equal to receiver window size. After that, we keep
congestion window size as constant.

3. Congestion Detection - Congestion is detected in this phase, and we change window size to accommodate it.

There are two ways in which congestion can be detected:

1. Time-Out - When timer times out before we receive an ACK. Congestion in this case is Severe.

2. 3-ACK- Sender receives 3 duplicate ACKs for the same segment. Congestion in this case is light.

For e.g, if sender sent packets 1,2,3,4 and 5. Receiver received packet 1 and sent ACK 2 (Original ACK).
Packet 2 was lost. Receiver received packet 3, and again sent ACK 2 (because it hasn’t received packet
2). Receiver received packet 4, and again sent ACK 2. Similarly for packet 5. Sender will thus receive 4
ACKS - 1 original, and 3 duplicate acknowledgments for packet 2.

Reaction in Congestion Detection

Time-Out

1. Slow Start Threshold is set as half of current window size. For e.g, if current window size is 16 MSS, slow start
threshold will be 8.

2. Congestion window is reset to be equal to 1 MSS.
3. Slow Start Phase is resumed

3-ACK

1. Slow Start Threshold is set as half of current window size.
2. Congestion window is set equal to slow start threshold
3. Congestion Avoidance phase is resumed

Wrap-Around

• TCP Sequence numbers go from 0 to 232 .
• This doesn’t mean only 4GB (232 bytes) of data can be sent
• After all the sequence numbers are used, and more data needs to be sent, sequence numbers can be wrapped

around and used from starting
• Time taken to use all the 232 numbers is called wrap around time

Wrap Around Time = 232

bandwidth

Life Time of a TCP Segment is 3 minutes or 180 seconds, i.e, a receiver will have to wait max 3 minutes before it
receives a segment

• if WAT > LT, no issue
• if LT> WAT, then receiver can receive multiple segments with same sequence number. To solve this, additional

fields like timestamp are used.

TCP Window Scaling

• TCP Window Size field is 16-bit, which means the window can only be 216 bits, or 64KB.

• This is generally too less for modern applications

• Using the options headers in TCP, we can specify a scaling factor. For e.g, if scaling factor is 3, and the
window size is specified as 400, then the actual window size will be 400 ∗ 23 = 3200.

i.e,
WSreal = WSfield_value ∗ 2scale_factor

• Generally, this is allowed when the bandwidth delay product is greater than 64KB.

Bandwidth Delay Product = Bandwidth * RTT

44

sat
vik

gu
pta

.co
m

• Maximum value of scaling factor is 14, i.e, the max window size becomes 216 ∗ 214 = 230 = 1GB

Sender Window in TCP is calculated using both Receiver Window Size and Congestion Window Size. It is chosen as
the minimum of both. Sender window size being larger than either of those will result in TCP retransmission.

TCP Timers

Retransmission Timer

• TCP start timer after each transmission. If an ACK is not received before this timer runs out, the segment is
retransmitted.

• The amount of time it waits is called RTO (Retransmission Timeout)
• RTO is calculated using RTT, there are many ways to do so.

Measured RTT (RTTm)

This is the direct measured value of how long it takes for a packet being sent and for its ACK to be received.

Smoothed RTT (RTTs)

It is the weighted average of measured RTT, since RTTm can fluctuate.

It is calculated as:

After the first measurement, RTTs = RTTm

After each measurement, RTTs = (1 − t) ∗ RTTs + t ∗ RTTm

where t = 1/8 , unless specified. t is also sometimes written as α

RTO can be then kept as 2 ∗ RTTs

Deviated RTT (RTTd)

It is calculated as:

After the first measurement, RTTd = RTTm/2

After each measurement, RTTs = (1 − k) ∗ RTTs + k ∗ (RTTm − RTTs)

where k = 1/4 , unless specified. k is also sometimes written as β

RTO is then calculated as RTTs + 4 ∗ RTTd

Time-Wait Timer

• Takes care of late packets
• Never close a TCP connection immediately. Wait for 2*LT, so that any delayed packets can arrive.

Keep-Alive Timer

• Used to close idle connections.
• Periodically check connections, and close them if no reply.
• After keep-alive time duration, server will send 10 probe messages with gap of 75 seconds. If no reply, the

connection is closed.
• Keep-alive time duration is generally 2 hours.

Persistent Timer

• Suppose receiver’s buffer is full, so it sends an ACK to sender with window-size=0
• Sender understands that it cannot send more data as receiver buffer is full, and it waits.
• Receiver processes the data in buffer and empties it. Now it has space, so it sends another ACK to server with

window-size = some non-zero value. Suppose this ACK gets lost.

45

sat
vik

gu
pta

.co
m

• Now, sender is waiting for receiver to empty its buffer, and receiver is waiting for sender to send data. This is
a deadlock.

• To prevent this, persistent timer is use. When sender receives a packet with window size=0, it will start a
persistent timer.

• After that timer goes off, it will send a probe with only 1 byte of new data. The receiver will receive this probe
and send its new window size.

• If the new window size is non-zero, the sender will start transmitting data. If it is still zero, the sender will
start the persistent timer again and wait.

UDP
UDP (User Datagram Protocol) is another transport layer service. It’s popular applications include DNS, VoIP, etc.

Characteristics

• Connectionless
• Unreliable
• Messages may be delivered out of order.
• Less overhead, as header is very small.
• Faster than TCP.

Header

Figure 21: UDP Header

• Header size is fixed at 8 bytes.
• Length contains total length (header+data)
• Maximum length of UDP datagram is 216 bytes (including header)
• Checksum field is optional in IPv4, mandatory in IPv6.

UDP Applications

• Query-Response Protocol (One query-One reply, no need to make a connection as we only need one reply).
For e.g - DNS

46

sat
vik

gu
pta

.co
m

• Speed - When we need high-speed applications. For e.g. - Online games, VoIP.
• Broadcasting/Multicasting- Eg, RIP (Routing Information Protocol), Distance Vector Routing. Nodes

share routing tables after every 30 seconds, to all other nodes. If we use TCP, the node will have to establish
connections with all other nodes, which will be time consuming.

• Continuous Streaming- E.g, Skype/YouTube.
• Stateless - Don’t save information about the connecting clients.

TCP vs UDP

TCP UDP
Connection-Oriented Connectionless

Reliable Unreliable
In-order Delivery Delivery may be out of order

Error Control is Mandatory Error control is optional
Slow Fast

More Overhead Less overhead
Flow Control, Congestion Control No flow control or congestion control

HTTP, FTP DNS,BOOTP,DHCP

Application Layer
Enables users (human or s/w) to access the network. It is responsible for providing services to the user.

Paradigms
• Provides services to the user
• To use the internet we need 2 application programs that communicate with each other using the application

layer.
• Communication uses a logical connection, i.e, the 2 application programs assume that there is an imaginary

direct connection between them. In reality, the communication happens through various layers (Transport,
Network, Data-Link, etc.)

There are 2 types:

• Client-Server - Server program provides service to the client program. It is the most popular method today.
Server runs continuously. Client creates a connection to the server using the Internet and requests a particular
service.

• Peer to Peer - Gaining popularity in recent times. Both communicating programs have equal responsibility
and power. No program needs to be always running. A computer can even provide and receive services at the
same time.

File Transferring
FTP (File Transfer Protocol)

• It’s an application layer protocol used for transferring (uploading and downloading) files over the Internet.
• It uses TCP under the hood.
• It solves problems such as different systems having different ways of representing and storing files.
• It establishes 2 connections between 2 hosts:

– One connection is used for control information (commands and responses). This uses TCP port 21. It
remains active during the FTP session.

– The other connection is used for actual data transfer. This uses TCP port 20. It closes and opens for
each file transfer.

Security in FTP

• Security was not a big issue when FTP was created.

47

sat
vik

gu
pta

.co
m

• FTP supports passwords, but they are sent unencrypted, therefore they can be intercepted.
• Data is also transferred unencrypted.
• SSL (Secure Sockets Layer) can be added to FTP (between FTP and TCP) to make it more secure. This

makes it SSL-FTP.

FTAM (File Transfer Access Management)

• FTP was created by the Internet standard. FTAM is the OSI counterpart to FTP.
• It is a Application Layer protocol that provides access and management to a distributed network file system.
• It allows users to access file systems both locally and remotely.
• It defines an architecture for a hierarchical file system. Any file system that wants to be accessible using

FTAM must follow this architecture.
• It does not define or create a user interface for accessing such file systems. Vendors and users can create their

own based on the architecture specified.
• It is more similar to Gopher or WWW rather than FTP. FTP only allows files, whereas FTAM also allows

links to other FTAM directories (like WWW does)

Email
• Used to send messages over the Internet
• Used to be plain text, now can include images, videos, files, etc.
• Actual message transfer is done using a message transfer agent (MTA). Client must have client MTA to send

mail, server must have server MTA to receive mail.

SMTP

SMTP (Simple Mail Transfer Protocol) is the formal protocol that defines MTA client and server applications.
SMTP defines how commands and responses must be sent back and forth. It is used twice, once between sender and
sender’s mail server, and second between sender’s mail server and receiver’s mail server. Mail is transferred in 3
phases - Connection Establishment, Mail Transfer, and Connection Termination.

Components of SMTP

Mail User Agent (MUA)

Computer application that helps the user in sending and receiving email. Eg - outlook, thunderbird.

Mail submission agent (MSA)

Used to send email. It receives email from MUA, and interacts with the MTA for sending it.

Mail transfer agent (MTA)

Transfers email from one system to another using SMTP

Mail delivery agent (MDA)

Helps deliver email to the local system, put it into appropriate mailboxes,filter spam etc. It works before the message
hits the user’s inbox.

SMTP Commands

HELO

Identifies the user and the full domain name. This is transmitted only once per session.

MAIL

Used to initiate transfer of mail

48

sat
vik

gu
pta

.co
m

RCPT

This command comes immediately after MAIL. Used to identify recipient’s full domain name.

DATA

Data is transferred line by line

Message Access Agents - POP and IMAP

• SMTP is not involved in pulling mail to client. It is only a push protocol and pushes mail from client to server.
• Message Access Agents such as POP (Post Office Protocol) and IMAP (Internet Mail Access Protocol) are

used to pull messages from the server.

POP3

• Simple and limited.
• Client opens connection to server on port 110. It sends its username and password.
• It can access mail messages in delete mode or keep mode. In delete mode, once a message is downloaded from

the server, the server will delete it. The user can keep a local copy. In keep mode, the server side copy will be
kept intact.

IMAP4

• More powerful and complex.
• User can check email header before downloading the entire message.
• User can search email
• Partially downloadable email
• Different mailboxes, folders, hierarchy of folders can be created.

MIME

MIME (Multipurpose Internet Mail Extension) is used to extend the ability of email.

• Email generally only supports 7-bit ASCII messages.
• MIME allows non-ASCII data, including multimedia, to be sent using email.
• MIME transforms non-ASCII data to NVT ASCII and delivers them to client MTA. On the receiving side the

message is transformed back.

Extended SMTP (ESMTP) vs SMTP

ESMTP SMTP
Authentication of sender is done No authentication is present.

Multimedia can be attached directly Multimedia can only be attached using MIME
Size of email can be reduced Email size cannot be reduced

SSL encryption is done No encryption
Transmission opened using EHLO command Transmission opened using HELO command.

DNS
DNS stands for domain name system. It is used to convert domain names, such as google.com, to IP addresses, such
as 8.8.8.8. Special DNS servers are used for this. Many of them exist due to the large number of websites on the
internet that need DNS services.

49

sat
vik

gu
pta

.co
m

DNS Server Hierarchy

Root DNS Server

This is the highest level in the hierarchy. Many of these exist, and are operated by very few organizations (around
13). When a root DNS server is asked to provide the IP of a website, it doesn’t provide the IP directly. Instead, it
provides the IP of the correct TLD DNS server that will contain the needed website’s IP.

Top-Level Domain (TLD) DNS Server

TLDs are used for a particular domain ending - for e.g, .com, .edu, .in, etc. Each will have a different TLD server.
The TLD will point the query towards the correct authoritative DNS server that contains the website’s IP.

Authoritative DNS Server

Authoritative DNS servers contain a broad list of domain names and their IP addresses. The authoritative DNS
server will return back a website’s IP address to us.

DNS Name Hierarchy

Suppose we take the domain - www.example.com

A fully qualified domain name (FQDN) always has a . at the end, even if we don’t write it. So our domain becomes
www.example.com.

This can be divided into 4 parts, from right to left.

1. The root level domain - Represented by the dot at the end, this is the highest hierarchy level. It is used to
denote the root level DNS server.

2. TLD - The TLD in our case is com
3. Second-level domain- This is the website’s name, for e.g a business name. In our case it is example
4. Sub-domain - Here, www is a subdomain. We can also create more subdomains such as shop.example.com,

cloud.example.com, images.example.com, etc.

Session Layer
Functions of Session Layer

• Dialog Control - allow systems to enter into full/half duplex dialog
• Managing tokens
• Synchronization

Design Issues
• Establishing sessions between 2 machines - opening, closing and maintaining a semi-permanent dialogue.
• Enhanced services (checkpoints and tokens)

RPC (Remote Procedure Call)
RPC is a protocol that works in session layer of OSI model, and application layer of TCP/IP model.

• RPC is when a client calls a service on a server (or any other network computer), as if it is calling a function
on its own local system.

• Can work on TCP/UDP both, but prefers UDP.
• Uses authentication to verify client’s identity.

Client -> Client Side API —– RPC ——> Server -> Local function call -> Return value to client.

• Client doesn’t see the OSI layers or the network calls. To the client, it is simply calling a function.
• Stubs are used to convert data to different formats, as client and server may use different formats for data.
• The client stub takes the parameters for the RPC call and puts them into the message. This is called

parameter marshalling. It also puts the name or number of the procedure to be called.

50

sat
vik

gu
pta

.co
m

• The receiver stubs receives the message, unpacks it and gives it to the receiver application. The receiver
application calls the requested procedure with the given parameters. The result is packet into a message by
the receiver stub, and send to the client.

• The client stub receives the response, unpacks it, and gives it back to the client application.

Issues in RPC

• Binding - How does the client know who to call, what the procedure name is, etc.?

This has 2 solutions:

– Dynamic Binding - Find the server when RPC is called (at runtime)
– Naming and Locating - Server offering a service exports an interface for it, and registers the interface

with the system. Client must import an interface before communication.

• Different formats of data - solved by stubs.

• How to pass parameters - solved by parameter marshalling.

Types of RPC
Synchronous RPC

A calls RPC on B - calling process on A is suspended. Information is passed as parameters.

Asynchronous RPC

Client continues executing other commands after RPC request and receiving acknowledgment. When it receives the
response, it can use it.

One-Way RPC

Client doesn’t wait for an acknowledgment. This is unreliable since the receiver may never have received the RPC
request.

Deferred Synchronous RPC

Client periodically asks(polls) the server if the RPC results are available yet.

Failure Semantics in RPC
• Client unable to locate server - Return error to client application.
• Lost request message - Timeout messages, repeat the message if we don’t receive a reply after some time.
• Lost reply - Same as above.
• Server failure - Hard to detect if server failed or if message was lost. We also don’t know if server failed after

completing the procedure (but before sending its reply), or if the procedure was never executed (server failed
before calling it.)

• Client failure - Client fails before it can receive the reply.

Presentation Layer - Security
One of the major functions of the presentation layer is security and cryptography.

Types of Cryptosystems
Symmetric

AKA conventional cryptography/shared-key systems/secret-key systems.

Sender and receiver share the same key, which is used both for encryption and decryption.

The shared key must be kept private. Anyone in possession of the key can read encrypted messages.

51

sat
vik

gu
pta

.co
m

The notation Ka,b is used to denote a secret-key shared by A and B.

Asymmetric

AKA Public-key cryptography.

The keys for encryption and decryption are different, but form a unique pair. The key for decryption can only
decrypt the data encrypted with its pair key.

Key for encryption - KE .

Key for decryption - KD.

One of the keys is made public, and the other one kept private.

The notation K+
A is used to denote a public key belonging to A, and K−

A denotes a private key belonging to A.

If Bob wants to send a message to Alice, he should encrypt it using Alice’s public key. Since Alice is the only person
who possessed the corresponding private key, only she can decrypt the message.

Types of Ciphers
Ciphers are algorithms used to change plaintext to ciphertext. Plaintext is our original information. Ciphertext is
it’s encrypted form. A cipher does character-to-character, or bit-to-bit transformations. A code, on the other hand,
transforms entire words.

Substitution Ciphers

Each letter is replaced, or substituted, by another letter. It can also be done for groups of letters, for e.g, two at a
time.

A simple example is the Caesar cipher, in which the letters of the alphabet are shifted a fixed number of positions.
For e.g, if we shift by 2,

A becomes C, B becomes D, C becomes E, etc.

Modern substitution ciphers are much more complex, and tough to break.

Transposition Ciphers

In substitution ciphers, we changed the letters/bits, but kept their order the same. In transposition ciphers, we will
keep the letters the same, but change their order.

One simple transposition cipher is the columnar transposition, shown here.

52

sat
vik

gu
pta

.co
m

Figure 22: image-20230506141817783

Here, MEGABUCK is the secret key that must not be shared with anyone except the receiver. We write the plaintext
rowwise, with the number of columns being the length of the key.

We write the ciphertext columnwise. We start with the column whose key is lowest. Here, lower is determined by
position in alphabet. Thus, we write out column A -> B->C->E->G->K->M.

One-Time Pad

This is an unbreakable cipher, but it has its own disadvantages.

• Choose a random bit-string as the key.

• Convert the plaintext into bits, for e.g, using ASCII.

• XOR the plaintext with the key. This produces the ciphertext, which is sent to the receiver.

• To decrypt, the ciphertext is again XORed with the key, and converted back to character form.

• This is unbreakable, because if a hacker tries to try all possible keys, he will receive valid (but wrong) answers.

For e.g, if the original message is “Hello World”, using the key key1. Suppose the hacker tries to XOR the
ciphertext using key2, and he receives the message “Good morning”. He will not know whether “Good Morning”
was the actual message.

• Major issue with one-time pads is that both sender and receiver need to maintain a copy of the key, that can
never be lost or changed. One key can also not be used a large amount of times, as then hackers will get a
large amount of data to try to guess the key from.

RSA
An asymmetric encryption algorithm named after its inventors - Rivest, Shamir and Adleman.

Based on the fact that prime factorization of very large numbers is a difficult and time-consuming process.

Steps

1. Take 2 very large prime numbers - p and q.

2. Calculate
n = p ∗ q

53

sat
vik

gu
pta

.co
m

z = (p − 1) ∗ (q − 1)

3. Choose d such that d is relatively prime to z.

4. Compute e such that

(e ∗ d)%z = 1

Now, the number d can be used for decryption, and e for encryption.

One of these is kept private, and the other is made public.

Usage

Let the message to be sent be m. Here, m is interpreted simply as a binary number.

1. Divide m into fixed length blocks, mi, such that:

0 ≤ mi ≤ n

Each mi is also interpreted as a binary number.

2. The sender calculates
ci = (me

i)%n

All such ci are calculated and concatenated into a single variable c.

3. c is sent to the receiver.

4. The receiver calculates
yi = (cd

i)%n

Based on the properties of modulus, and the way we have chosen e and d, we can easily see that yi = mi∀i.

This way, the receiver is able to reconstruct the message.

Properties of RSA

• RSA is secure because no method exist to (efficiently) find prime factors of large numbers.
• RSA itself is also computationally expensive, around 100-1000x slower than DES.
• It’s generally used to securely share session keys, and then those session keys are used in a (faster) encryption

algorithm, such as AES or DES.

Securely sending messages (Secure Channels)
Securely sending messages has the following problems to solve.

• Confidentiality

No one else other than the intended recipient should be able to read the message.

• Integrity

The recipient should have a way to be sure that the contents of the message weren’t tampered.

• Authentication

Both parties should have a way to be confident that they are sending messages to the right person.

54

sat
vik

gu
pta

.co
m

Digital Signatures

Confidentiality and Integrity needs to be maintained in secure channels.

• Alice needs to be sure that Bob cannot alter a message and claim that Alice sent it.
• Bob needs to be able to prove that a message indeed came from Alice, and that she cannot deny having sent it.

Digital Signatures are used for this. The document is signed using the sender’s public key, which uniquely ties the
sender to the message.

• Alice sends a message m to Bob. She encrypts it with her private key to create a signature. The signature
and the original message are sent to Bob.

– If she wants to keep the message content a secret, she can encrypt the entire thing using Bob’s public key.
– The message will then be K+

B (m, K−
A (m)), where K−

A (m) is the signature.
• Message arrives at Bob.

– If it’s secret, he first decrypts it using his private key.
• He decrypts the signature using Alice’s public key, and matches it with m. If the decrypted signature and m

match, then he can be sure the message was sent from Alice and is untampered with.
• Alice cannot claim she never sent the message, or sent a different message, because Bob has the signed version

of m, and only Alice could have signed it, since only she possesses her private key.
• Bob cannot claim Alice sent a modified message, because he would have to prove that Alice signed the modified

message as well.

Figure 23: Digitally signing messsages

Issues with this scheme

• This remains valid only as long as Alice’s private key remains private. If the key is stolen or leaked, Alice will
have to generate a new key, and all messages signed using the previous key will then become worthless.

• If the message is long, encrypting the entire message may be computationally expensive.

A solution for the second problem is a message digest.

Message Digest

It’s a fixed length string h that’s computed from a message m of arbitrary length, using a hash function H.

If m is changed to m′, then it’s hash H(m′) will not be the same as before (H(m)). Thus, modifications will easily
be detected.

Instead of signing m, Alice signs H(m), which becomes the signature.

The message sent to Bob is now K+
B (m, K−

A (H(m))), where K−
A (H(m)) is the signature.

On Bob’s end, Bob will hash the entire message himself, decrypt the signature, and compare the hashes. If they
match, all is good.

55

sat
vik

gu
pta

.co
m

Figure 24: Digitally signing messages using digests

Diffie-Hellman Key Exchange

This is a method for 2 parties to exchange keys without the use of a third party.

1. Alice and Bob agree on 2 large numbers, n and g. Both numbers can be made public.
2. Alice chooses a large number x and keeps it private, and Bob chooses a large number y, and also keeps it

private. Alice does not know y and Bob doesn’t know x.
3. Alice sends gx mod n to Bob.
4. Bob sends gy mod n to Alice.
5. Alice computes KA,B as:

KA,B = (gy mod n)x = gxy mod n

6. Bob computes KA,B as:
KA,B = (gx mod n)y = gxy mod n

This way both Alice and Bob get the same session key, and no one listening from outside will be able to recreate it.
This is based on the same principle as RSA.

56

	Introduction
	Communication link:
	Goals of Networks
	Data communication
	Components of Effective Data Communication
	Components of Data communication system
	Types of Communication
	Physical Structure

	Physical Topology
	Bus Topology
	Ring Topology
	Star Topology
	Mesh Topology
	Tree Topology

	Networks Based on Geographical Area
	OSI Model - Open Systems Interconnection
	Data in layers:

	Physical Layer
	Transmission Media
	Wired/Guided Media:
	Wireless/Unguided Media:

	Propagation Methods
	Bands
	Switched Networks
	Network Architecture
	Types of Communication on the basis of Connection
	Connection-Oriented
	Connectionless

	TCP/IP Stack
	Internet Protocol (IP)
	Transmission Control Protocol (TCP)
	User Datagram Protocol (UDP)

	Data Link Layer
	Delay
	Transmission Delay
	Propagation Delay
	Queueing Delay
	Processing Delay

	Framing Techniques
	Character Count
	Flag (Character Stuffing/Byte Stuffing)
	Bit Stuffing

	Error Detection and Control
	Parity Check
	Hamming Code
	Checksum
	CRC (Cyclic Redundancy Check)

	Flow Control
	Stop & Wait ARQ (Automatic Repeat ReQuest)
	Formulas
	Go Back N
	Selective Repeat (SR)
	Data Encoding Techniques

	Media Access Sublayer
	Media Access Control and Multiple Access Protocols
	Random Access/ Contention Methods
	Pure Aloha
	Slotted Aloha
	CSMA (Carrier Sense Multiple Access)
	Persistence Methods for CSMA
	CSMA with Collision Detection (CSMA/CD)

	Network Layer
	Classful Addressing
	Class A
	Class B
	Class C
	Class D
	Class E

	Classless Addressing
	Rules for Classless Addressing

	Subnetting
	Subnetting in Classful Addressing
	Subnetting in Classless Addressing
	Variable Length Subnet Masking (VLSM)

	Header Formats for IP Protocols
	IPv4 Header Format
	IPv6 Header

	Congestion Control
	Leaky Bucket
	Token Bucket

	Routing Protocols
	Distance Vector Routing (DVR)
	Link State Routing
	Routing in Subnets

	Network Protocols
	ARP (Address Resolution Protocol)
	NAT (Network Address Translation)

	Transport Layer
	Responsibilities
	Socket Address and Port Numbers
	Port Number Types
	

	TCP (Transmission Control Protocol)
	Characteristics
	TCP Header
	TCP Connection Establishment
	TCP Connection Termination
	TCP Congestion Control
	Wrap-Around
	TCP Window Scaling
	TCP Timers

	UDP
	Characteristics
	Header
	UDP Applications

	TCP vs UDP

	Application Layer
	Paradigms
	File Transferring
	FTP (File Transfer Protocol)
	FTAM (File Transfer Access Management)

	Email
	SMTP
	Message Access Agents - POP and IMAP
	MIME
	Extended SMTP (ESMTP) vs SMTP

	DNS
	DNS Server Hierarchy
	DNS Name Hierarchy

	Session Layer
	Functions of Session Layer
	Design Issues
	RPC (Remote Procedure Call)
	Issues in RPC

	Types of RPC
	Synchronous RPC
	Asynchronous RPC
	One-Way RPC
	Deferred Synchronous RPC

	Failure Semantics in RPC

	Presentation Layer - Security
	Types of Cryptosystems
	Symmetric
	Asymmetric

	Types of Ciphers
	Substitution Ciphers
	Transposition Ciphers
	One-Time Pad

	RSA
	Steps
	Usage
	Properties of RSA

	Securely sending messages (Secure Channels)
	Digital Signatures
	Diffie-Hellman Key Exchange

